Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Power bounded operators and the mean ergodic theorem for subsequences

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00532219" target="_blank" >RIV/67985840:_____/21:00532219 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.jmaa.2020.124523" target="_blank" >https://doi.org/10.1016/j.jmaa.2020.124523</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jmaa.2020.124523" target="_blank" >10.1016/j.jmaa.2020.124523</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Power bounded operators and the mean ergodic theorem for subsequences

  • Popis výsledku v původním jazyce

    Let T be a power bounded Hilbert space operator without unimodular eigenvalues. We show that the subsequential ergodic averages N−1∑n=1NTan converge in the strong operator topology for a wide range of sequences (an), including the integer part of most of subpolynomial Hardy functions. Moreover, we show that the weighted averages N−1∑n=1Ne2πig(n)Tan also converge for many reasonable functions g. In particular, we generalize the polynomial mean ergodic theorem for power bounded operators due to ter Elst and the second author [16] to real polynomials and polynomial weights.

  • Název v anglickém jazyce

    Power bounded operators and the mean ergodic theorem for subsequences

  • Popis výsledku anglicky

    Let T be a power bounded Hilbert space operator without unimodular eigenvalues. We show that the subsequential ergodic averages N−1∑n=1NTan converge in the strong operator topology for a wide range of sequences (an), including the integer part of most of subpolynomial Hardy functions. Moreover, we show that the weighted averages N−1∑n=1Ne2πig(n)Tan also converge for many reasonable functions g. In particular, we generalize the polynomial mean ergodic theorem for power bounded operators due to ter Elst and the second author [16] to real polynomials and polynomial weights.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GX20-31529X" target="_blank" >GX20-31529X: Abstraktní konvergenční schémata a jejich složitost</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Mathematical Analysis and Applications

  • ISSN

    0022-247X

  • e-ISSN

    1096-0813

  • Svazek periodika

    493

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    25

  • Strana od-do

    124523

  • Kód UT WoS článku

    000576820100003

  • EID výsledku v databázi Scopus

    2-s2.0-85089749741