Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Kreiss bounded and uniformly Kreiss bounded operators

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00542394" target="_blank" >RIV/67985840:_____/21:00542394 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/s13163-020-00355-x" target="_blank" >https://doi.org/10.1007/s13163-020-00355-x</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s13163-020-00355-x" target="_blank" >10.1007/s13163-020-00355-x</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Kreiss bounded and uniformly Kreiss bounded operators

  • Popis výsledku v původním jazyce

    If T is a Kreiss bounded operator on a Banach space, then ‖ Tn‖ = O(n). Forty years ago Shields conjectured that in Hilbert spaces, ‖Tn‖=O(n). A negative answer to this conjecture was given by Spijker, Tracogna and Welfert in 2003. We improve their result and show that this conjecture is not true even for uniformly Kreiss bounded operators. More precisely, for every ε> 0 there exists a uniformly Kreiss bounded operator T on a Hilbert space such that ‖ Tn‖ ∼ (n+ 1) 1 - ε for all n∈ N. On the other hand, any Kreiss bounded operator on Hilbert spaces satisfies ‖Tn‖=O(nlogn). We also prove that the residual spectrum of a Kreiss bounded operator on a reflexive Banach space is contained in the open unit disc, extending known results for power bounded operators. As a consequence we obtain examples of mean ergodic Hilbert space operators which are not Kreiss bounded.

  • Název v anglickém jazyce

    Kreiss bounded and uniformly Kreiss bounded operators

  • Popis výsledku anglicky

    If T is a Kreiss bounded operator on a Banach space, then ‖ Tn‖ = O(n). Forty years ago Shields conjectured that in Hilbert spaces, ‖Tn‖=O(n). A negative answer to this conjecture was given by Spijker, Tracogna and Welfert in 2003. We improve their result and show that this conjecture is not true even for uniformly Kreiss bounded operators. More precisely, for every ε> 0 there exists a uniformly Kreiss bounded operator T on a Hilbert space such that ‖ Tn‖ ∼ (n+ 1) 1 - ε for all n∈ N. On the other hand, any Kreiss bounded operator on Hilbert spaces satisfies ‖Tn‖=O(nlogn). We also prove that the residual spectrum of a Kreiss bounded operator on a reflexive Banach space is contained in the open unit disc, extending known results for power bounded operators. As a consequence we obtain examples of mean ergodic Hilbert space operators which are not Kreiss bounded.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GX20-31529X" target="_blank" >GX20-31529X: Abstraktní konvergenční schémata a jejich složitost</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Revista Mathématica Complutense

  • ISSN

    1139-1138

  • e-ISSN

    1988-2807

  • Svazek periodika

    34

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    ES - Španělské království

  • Počet stran výsledku

    19

  • Strana od-do

    469-487

  • Kód UT WoS článku

    000525361000001

  • EID výsledku v databázi Scopus

    2-s2.0-85083390879