Cesàro bounded operators in Banach spaces
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F20%3A00524149" target="_blank" >RIV/67985840:_____/20:00524149 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s11854-020-0085-8" target="_blank" >https://doi.org/10.1007/s11854-020-0085-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11854-020-0085-8" target="_blank" >10.1007/s11854-020-0085-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cesàro bounded operators in Banach spaces
Popis výsledku v původním jazyce
We study several notions of boundedness for operators. It is known that any power bounded operator is absolutely Cesàro bounded and strongly Kreiss bounded (in particular, uniformly Kreiss bounded). The converses do not hold in general. In this note, we give examples of topologically mixing (hence, not power bounded) absolutely Cesàro bounded operators on ℓp(ℕ), 1 ≤ p < ∞, and provide examples of uniformly Kreiss bounded operators which are not absolutely Cesàro bounded. These results complement a few known examples (see [27] and [2]). We also obtain a characterization of power bounded operators which generalizes a result of Van Casteren [32]. In [2] Aleman and Suciu asked if every uniformly Kreiss bounded operator T on a Banach space satisfies that (Formula presented.). We solve this question for Hilbert space operators and, moreover, we prove that, if T is absolutely Cesàro bounded on a Banach (Hilbert) space, then ∥Tn∥ = o(n) ((∥Tn∥=o(n12), respectively). As a consequence, every absolutely Cesàro bounded operator on a reflexive Banach space is mean ergodic.
Název v anglickém jazyce
Cesàro bounded operators in Banach spaces
Popis výsledku anglicky
We study several notions of boundedness for operators. It is known that any power bounded operator is absolutely Cesàro bounded and strongly Kreiss bounded (in particular, uniformly Kreiss bounded). The converses do not hold in general. In this note, we give examples of topologically mixing (hence, not power bounded) absolutely Cesàro bounded operators on ℓp(ℕ), 1 ≤ p < ∞, and provide examples of uniformly Kreiss bounded operators which are not absolutely Cesàro bounded. These results complement a few known examples (see [27] and [2]). We also obtain a characterization of power bounded operators which generalizes a result of Van Casteren [32]. In [2] Aleman and Suciu asked if every uniformly Kreiss bounded operator T on a Banach space satisfies that (Formula presented.). We solve this question for Hilbert space operators and, moreover, we prove that, if T is absolutely Cesàro bounded on a Banach (Hilbert) space, then ∥Tn∥ = o(n) ((∥Tn∥=o(n12), respectively). As a consequence, every absolutely Cesàro bounded operator on a reflexive Banach space is mean ergodic.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-27844S" target="_blank" >GA17-27844S: Generické objekty</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal D Analyse Mathematique
ISSN
0021-7670
e-ISSN
—
Svazek periodika
140
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
IL - Stát Izrael
Počet stran výsledku
20
Strana od-do
187-206
Kód UT WoS článku
000525081600002
EID výsledku v databázi Scopus
2-s2.0-85083798906