Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A new approach to curvature measures in linear shell theories

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00544897" target="_blank" >RIV/67985840:_____/21:00544897 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1177/1081286520972752" target="_blank" >https://doi.org/10.1177/1081286520972752</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1177/1081286520972752" target="_blank" >10.1177/1081286520972752</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A new approach to curvature measures in linear shell theories

  • Popis výsledku v původním jazyce

    he paper presents a coordinate-free analysis of deformation measures for shells modeled as 2D surfaces. These measures are represented by second-order tensors. As is well-known, two types are needed in general: the surface strain measure (deformations in tangential directions), and the bending strain measure (warping). Our approach first determines the 3D strain tensor E of a shear deformation of a 3D shell-like body and then linearizes E in two smallness parameters: the displacement and the distance of a point from the middle surface. The linearized expression is an affine function of the signed distance from the middle surface: the absolute term is the surface strain measure and the coefficient of the linear term is the bending strain measure. The main result of the paper determines these two tensors explicitly for general shear deformations and for the subcase of Kirchhoff-Love deformations. The derived surface strain measures are the classical ones: Naghdi’s surface strain measure generally and its well-known particular case for the Kirchhoff-Love deformations. With the bending strain measures comes a surprise: they are different from the traditional ones. For shear deformations our analysis provides a new tensor (Formula presented.), which is different from the widely used Naghdi’s bending strain tensor (Formula presented.). In the particular case of Kirchhoff-Love deformations, the tensor (Formula presented.) reduces to a tensor (Formula presented.) introduced earlier by Anicic and Léger (Formulation bidimensionnelle exacte du modéle de coque 3D de Kirchhoff-Love. C R Acad Sci Paris I 1999: 329: 741-746). Again, (Formula presented.) is different from Koiter’s bending strain tensor (Formula presented.) (frequently used in this context).

  • Název v anglickém jazyce

    A new approach to curvature measures in linear shell theories

  • Popis výsledku anglicky

    he paper presents a coordinate-free analysis of deformation measures for shells modeled as 2D surfaces. These measures are represented by second-order tensors. As is well-known, two types are needed in general: the surface strain measure (deformations in tangential directions), and the bending strain measure (warping). Our approach first determines the 3D strain tensor E of a shear deformation of a 3D shell-like body and then linearizes E in two smallness parameters: the displacement and the distance of a point from the middle surface. The linearized expression is an affine function of the signed distance from the middle surface: the absolute term is the surface strain measure and the coefficient of the linear term is the bending strain measure. The main result of the paper determines these two tensors explicitly for general shear deformations and for the subcase of Kirchhoff-Love deformations. The derived surface strain measures are the classical ones: Naghdi’s surface strain measure generally and its well-known particular case for the Kirchhoff-Love deformations. With the bending strain measures comes a surprise: they are different from the traditional ones. For shear deformations our analysis provides a new tensor (Formula presented.), which is different from the widely used Naghdi’s bending strain tensor (Formula presented.). In the particular case of Kirchhoff-Love deformations, the tensor (Formula presented.) reduces to a tensor (Formula presented.) introduced earlier by Anicic and Léger (Formulation bidimensionnelle exacte du modéle de coque 3D de Kirchhoff-Love. C R Acad Sci Paris I 1999: 329: 741-746). Again, (Formula presented.) is different from Koiter’s bending strain tensor (Formula presented.) (frequently used in this context).

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Mathematics and Mechanics of Solids

  • ISSN

    1081-2865

  • e-ISSN

    1741-3028

  • Svazek periodika

    26

  • Číslo periodika v rámci svazku

    9

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    23

  • Strana od-do

    1241-1263

  • Kód UT WoS článku

    000682022500001

  • EID výsledku v databázi Scopus

    2-s2.0-85098250649