Ring-theoretic (in)finiteness in reduced products of Banach algebras
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00546805" target="_blank" >RIV/67985840:_____/21:00546805 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.4153/S0008414X20000565" target="_blank" >https://doi.org/10.4153/S0008414X20000565</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4153/S0008414X20000565" target="_blank" >10.4153/S0008414X20000565</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Ring-theoretic (in)finiteness in reduced products of Banach algebras
Popis výsledku v původním jazyce
We study ring-theoretic (in)finiteness properties such as Dedekind-finiteness and proper infiniteness* of ultraproducts (and more generally, reduced products) of Banach algebras.nWhile we characterise when an ultraproduct has these ring-theoretic properties in terms of its underlying sequence of algebras, we find that, contrary to the C∗-algebraic setting, it is not true in general that an ultraproduct has a ring-theoretic finiteness property if and only if “ultrafilter many” of the underlying sequence of algebras have the same property. This might appear to violate the continuous model theoretic counterpart of Łoś’s Theorem, the reason it does not is that for a general Banach algebra, the ring theoretic properties we consider cannot be verified by considering a bounded subset of the algebra of fixed bound. For Banach algebras, we construct counter-examples to show, for example, that each component Banach algebra can fail to be Dedekind-finite while the ultraproduct is Dedekind-finite, and we explain why such a counter-example is not possible for C∗-algebras. Finally, the related notion of having stable rank one is also studied for ultraproducts.
Název v anglickém jazyce
Ring-theoretic (in)finiteness in reduced products of Banach algebras
Popis výsledku anglicky
We study ring-theoretic (in)finiteness properties such as Dedekind-finiteness and proper infiniteness* of ultraproducts (and more generally, reduced products) of Banach algebras.nWhile we characterise when an ultraproduct has these ring-theoretic properties in terms of its underlying sequence of algebras, we find that, contrary to the C∗-algebraic setting, it is not true in general that an ultraproduct has a ring-theoretic finiteness property if and only if “ultrafilter many” of the underlying sequence of algebras have the same property. This might appear to violate the continuous model theoretic counterpart of Łoś’s Theorem, the reason it does not is that for a general Banach algebra, the ring theoretic properties we consider cannot be verified by considering a bounded subset of the algebra of fixed bound. For Banach algebras, we construct counter-examples to show, for example, that each component Banach algebra can fail to be Dedekind-finite while the ultraproduct is Dedekind-finite, and we explain why such a counter-example is not possible for C∗-algebras. Finally, the related notion of having stable rank one is also studied for ultraproducts.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ19-07129Y" target="_blank" >GJ19-07129Y: Metody lineární analýzy v operátorových algebrách a naopak</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Canadian Journal of Mathematics
ISSN
0008-414X
e-ISSN
1496-4279
Svazek periodika
73
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
CA - Kanada
Počet stran výsledku
36
Strana od-do
1423-1458
Kód UT WoS článku
000721260300009
EID výsledku v databázi Scopus
2-s2.0-85107670293