A purely infinite Cuntz-like Banach *-algebra with no purely infinite ultrapowers
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00556606" target="_blank" >RIV/67985840:_____/22:00556606 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.jfa.2022.109488" target="_blank" >https://doi.org/10.1016/j.jfa.2022.109488</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jfa.2022.109488" target="_blank" >10.1016/j.jfa.2022.109488</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A purely infinite Cuntz-like Banach *-algebra with no purely infinite ultrapowers
Popis výsledku v původním jazyce
We continue our investigation, from [10], of the ring-theoretic infiniteness properties of ultrapowers of Banach algebras, studying in this paper the notion of being purely infinite. It is well known that a C⁎-algebra is purely infinite if and only if any of its ultrapowers are. We find examples of Banach algebras, as algebras of operators on Banach spaces, which do have purely infinite ultrapowers. Our main contribution is the construction of a “Cuntz-like” Banach ⁎-algebra which is purely infinite, but whose ultrapowers are not even simple, and hence not purely infinite. This algebra is a naturally occurring analogue of the Cuntz algebra, and of the Lp-analogues introduced by Phillips. However, our proof of being purely infinite is combinatorial, but direct, and so differs from existing proofs. We show that there are non-zero traces on our algebra, which in particular implies that our algebra is not isomorphic to any of the Lp-analogues of the Cuntz algebra.
Název v anglickém jazyce
A purely infinite Cuntz-like Banach *-algebra with no purely infinite ultrapowers
Popis výsledku anglicky
We continue our investigation, from [10], of the ring-theoretic infiniteness properties of ultrapowers of Banach algebras, studying in this paper the notion of being purely infinite. It is well known that a C⁎-algebra is purely infinite if and only if any of its ultrapowers are. We find examples of Banach algebras, as algebras of operators on Banach spaces, which do have purely infinite ultrapowers. Our main contribution is the construction of a “Cuntz-like” Banach ⁎-algebra which is purely infinite, but whose ultrapowers are not even simple, and hence not purely infinite. This algebra is a naturally occurring analogue of the Cuntz algebra, and of the Lp-analogues introduced by Phillips. However, our proof of being purely infinite is combinatorial, but direct, and so differs from existing proofs. We show that there are non-zero traces on our algebra, which in particular implies that our algebra is not isomorphic to any of the Lp-analogues of the Cuntz algebra.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ19-07129Y" target="_blank" >GJ19-07129Y: Metody lineární analýzy v operátorových algebrách a naopak</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Functional Analysis
ISSN
0022-1236
e-ISSN
1096-0783
Svazek periodika
283
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
36
Strana od-do
109488
Kód UT WoS článku
000792625900004
EID výsledku v databázi Scopus
2-s2.0-85127493049