Chain logic and Shelah’s infinitary logic
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00550973" target="_blank" >RIV/67985840:_____/21:00550973 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s11856-021-2207-0" target="_blank" >https://doi.org/10.1007/s11856-021-2207-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11856-021-2207-0" target="_blank" >10.1007/s11856-021-2207-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Chain logic and Shelah’s infinitary logic
Popis výsledku v původním jazyce
For a cardinal of the form κ = בκ, Shelah’s logic Lκ1 has a characterisation as the maximal logic above ∪ λ<κLλ,ω satisfying a strengthening of the undefinability of well-order. Karp’s chain logic [20] Lκ, κc is known to satisfy the undefinability of well-order and interpolation. We prove that if κ is singular of countable cofinality, Karp’s chain logic [20] is above Lκ1. Moreover, we show that if κ is a strong limit of singular cardinals of countable cofinality, the chain logic L<κ,<κc∪λ<κLλ,λc is a maximal logic with chain models to satisfy a version of the undefinability of well-order. We then show that the chain logic gives a partial solution to Problem 1.4 from Shelah’s [28], which asked whether for κ singular of countable cofinality there was a logic strictly between Lκ+,ω and Lκ+,κ+ having interpolation. We show that modulo accepting as the upper bound a model class of Lκ, κ, Karp’s chain logic satisfies the required properties. In addition, we show that this chain logic is not κ-compact, a question that we have asked on various occasions. We contribute to further development of chain logic by proving the Union Lemma and identifying the chain-independent fragment of the logic, showing that it still has considerable expressive power. In conclusion, we have shown that the simply defined chain logic emulates the logic Lκ1 in satisfying interpolation, undefinability of well-order and maximality with respect to it, and the Union Lemma. In addition it has a completeness theorem.
Název v anglickém jazyce
Chain logic and Shelah’s infinitary logic
Popis výsledku anglicky
For a cardinal of the form κ = בκ, Shelah’s logic Lκ1 has a characterisation as the maximal logic above ∪ λ<κLλ,ω satisfying a strengthening of the undefinability of well-order. Karp’s chain logic [20] Lκ, κc is known to satisfy the undefinability of well-order and interpolation. We prove that if κ is singular of countable cofinality, Karp’s chain logic [20] is above Lκ1. Moreover, we show that if κ is a strong limit of singular cardinals of countable cofinality, the chain logic L<κ,<κc∪λ<κLλ,λc is a maximal logic with chain models to satisfy a version of the undefinability of well-order. We then show that the chain logic gives a partial solution to Problem 1.4 from Shelah’s [28], which asked whether for κ singular of countable cofinality there was a logic strictly between Lκ+,ω and Lκ+,κ+ having interpolation. We show that modulo accepting as the upper bound a model class of Lκ, κ, Karp’s chain logic satisfies the required properties. In addition, we show that this chain logic is not κ-compact, a question that we have asked on various occasions. We contribute to further development of chain logic by proving the Union Lemma and identifying the chain-independent fragment of the logic, showing that it still has considerable expressive power. In conclusion, we have shown that the simply defined chain logic emulates the logic Lκ1 in satisfying interpolation, undefinability of well-order and maximality with respect to it, and the Union Lemma. In addition it has a completeness theorem.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GX20-31529X" target="_blank" >GX20-31529X: Abstraktní konvergenční schémata a jejich složitost</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Israel Journal of Mathematics
ISSN
0021-2172
e-ISSN
1565-8511
Svazek periodika
245
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
IL - Stát Izrael
Počet stran výsledku
42
Strana od-do
93-134
Kód UT WoS článku
000705737700008
EID výsledku v databázi Scopus
2-s2.0-85116478785