Strongly homotopy Lie algebras and deformations of calibrated submanifolds
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00555439" target="_blank" >RIV/67985840:_____/21:00555439 - isvavai.cz</a>
Výsledek na webu
<a href="https://dx.doi.org/10.4310/AJM.2021.v25.n3.a2" target="_blank" >https://dx.doi.org/10.4310/AJM.2021.v25.n3.a2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4310/AJM.2021.v25.n3.a2" target="_blank" >10.4310/AJM.2021.v25.n3.a2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Strongly homotopy Lie algebras and deformations of calibrated submanifolds
Popis výsledku v původním jazyce
For an element Ψ in the graded vector space Ω∗(M,TM) of tangent bundle valued forms on a smooth manifold M, a Ψ-submanifold is defined as a submanifold N of M such that Ψ|N∈Ω∗(N,TN). The class of Ψ-submanifolds encompasses calibrated submanifolds, complex submanifolds and all Lie subgroups in compact Lie groups. The graded vector space Ω∗(M,TM) carries a natural graded Lie algebra structure, given by the Frölicher–Nijenhuis bracket [−,−]FN. When Ψ is an odd degree element with [Ψ,Ψ]FN=0, we associate to a Ψ-submanifold N a strongly homotopy Lie algebra, which governs the formal and (under certain assumptions) smooth deformations of N as a Ψ-submanifold, and we show that under certain assumptions these deformations form an analytic variety. As an application we revisit formal and smooth deformation theory of complex closed submanifolds and of φ-calibrated closed submanifolds, where φ is a parallel form in a real analytic Riemannian manifold.
Název v anglickém jazyce
Strongly homotopy Lie algebras and deformations of calibrated submanifolds
Popis výsledku anglicky
For an element Ψ in the graded vector space Ω∗(M,TM) of tangent bundle valued forms on a smooth manifold M, a Ψ-submanifold is defined as a submanifold N of M such that Ψ|N∈Ω∗(N,TN). The class of Ψ-submanifolds encompasses calibrated submanifolds, complex submanifolds and all Lie subgroups in compact Lie groups. The graded vector space Ω∗(M,TM) carries a natural graded Lie algebra structure, given by the Frölicher–Nijenhuis bracket [−,−]FN. When Ψ is an odd degree element with [Ψ,Ψ]FN=0, we associate to a Ψ-submanifold N a strongly homotopy Lie algebra, which governs the formal and (under certain assumptions) smooth deformations of N as a Ψ-submanifold, and we show that under certain assumptions these deformations form an analytic variety. As an application we revisit formal and smooth deformation theory of complex closed submanifolds and of φ-calibrated closed submanifolds, where φ is a parallel form in a real analytic Riemannian manifold.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA18-00496S" target="_blank" >GA18-00496S: Singulární prostory ze speciální holonomie a foliací</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Asian Journal of Mathematics
ISSN
1093-6106
e-ISSN
1945-0036
Svazek periodika
25
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
28
Strana od-do
341-368
Kód UT WoS článku
000771642400002
EID výsledku v databázi Scopus
2-s2.0-85126946761