Block Gram-Schmidt algorithms and their stability properties
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00550984" target="_blank" >RIV/67985840:_____/22:00550984 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/22:10452869
Výsledek na webu
<a href="https://doi.org/10.1016/j.laa.2021.12.017" target="_blank" >https://doi.org/10.1016/j.laa.2021.12.017</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.laa.2021.12.017" target="_blank" >10.1016/j.laa.2021.12.017</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Block Gram-Schmidt algorithms and their stability properties
Popis výsledku v původním jazyce
Block Gram-Schmidt algorithms serve as essential kernels in many scientific computing applications, but for many commonly used variants, a rigorous treatment of their stability properties remains open. This work provides a comprehensive categorization of block Gram-Schmidt algorithms, particularly those used in Krylov subspace methods to build orthonormal bases one block vector at a time. Known stability results are assembled, and new results are summarized or conjectured for important communication-reducing variants. Additionally, new block versions of low-synchronization variants are derived, and their efficacy and stability are demonstrated for a wide range of challenging examples. Numerical examples are computed with a versatile Matlab package hosted at https://github.com/katlund/BlockStab, and scripts for reproducing all results in the paper are provided. Block Gram-Schmidt implementations in popular software packages are discussed, along with a number of open problems. An appendix containing all algorithms type-set in a uniform fashion is provided.
Název v anglickém jazyce
Block Gram-Schmidt algorithms and their stability properties
Popis výsledku anglicky
Block Gram-Schmidt algorithms serve as essential kernels in many scientific computing applications, but for many commonly used variants, a rigorous treatment of their stability properties remains open. This work provides a comprehensive categorization of block Gram-Schmidt algorithms, particularly those used in Krylov subspace methods to build orthonormal bases one block vector at a time. Known stability results are assembled, and new results are summarized or conjectured for important communication-reducing variants. Additionally, new block versions of low-synchronization variants are derived, and their efficacy and stability are demonstrated for a wide range of challenging examples. Numerical examples are computed with a versatile Matlab package hosted at https://github.com/katlund/BlockStab, and scripts for reproducing all results in the paper are provided. Block Gram-Schmidt implementations in popular software packages are discussed, along with a number of open problems. An appendix containing all algorithms type-set in a uniform fashion is provided.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-01074S" target="_blank" >GA20-01074S: Adaptivní metody pro numerické řešení parciálních diferenciálních rovnic: analýza, odhady chyb a iterativní řešiče</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Linear Algebra and Its Applications
ISSN
0024-3795
e-ISSN
1873-1856
Svazek periodika
638
Číslo periodika v rámci svazku
April 1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
46
Strana od-do
150-195
Kód UT WoS článku
000777811000006
EID výsledku v databázi Scopus
2-s2.0-85122191862