Finite-time stability of polyhedral sweeping processes with application to elastoplastic systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00558112" target="_blank" >RIV/67985840:_____/22:00558112 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1137/20M1388796" target="_blank" >https://doi.org/10.1137/20M1388796</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1137/20M1388796" target="_blank" >10.1137/20M1388796</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Finite-time stability of polyhedral sweeping processes with application to elastoplastic systems
Popis výsledku v původním jazyce
We use the ideas of Adly, Attouch, and Cabot [in Nonsmooth Mechanics and Analysis, Adv. Mech. Math. 12, Springer, New York, 2006, pp. 289-304] on finite-time stabilization of dry friction oscillators to establish a theorem on finite-time stabilization of differential inclusions with a moving polyhedral constraint (known as polyhedral sweeping processes) of the form C + c(t). We then employ the ideas of Moreau [in New Variational Techniques in Mathematical Physics (Centro Internaz. Mat. Estivo (CIME), II Ciclo, Bressanone, 1973), Edizioni Cremonese, Rome, 1974, pp. 171-322] to apply our theorem to a system of elastoplastic springs with a displacement-controlled loading. We show that verifying the condition of the theorem ultimately leads to the following two problems: (i) identifying the active vertex “A” or the active face “A” of the polyhedron that the vector c(t) points at, (ii) computing the distance from c(t) to the normal cone to the polyhedron at “A.” We provide a computational guide for solving problems (i)-(ii) in the case of an arbitrary elastoplastic system and apply it to a particular example. Due to the simplicity of the particular example, we can solve (i)-(ii) by the methods of linear algebra and basic combinatorics.
Název v anglickém jazyce
Finite-time stability of polyhedral sweeping processes with application to elastoplastic systems
Popis výsledku anglicky
We use the ideas of Adly, Attouch, and Cabot [in Nonsmooth Mechanics and Analysis, Adv. Mech. Math. 12, Springer, New York, 2006, pp. 289-304] on finite-time stabilization of dry friction oscillators to establish a theorem on finite-time stabilization of differential inclusions with a moving polyhedral constraint (known as polyhedral sweeping processes) of the form C + c(t). We then employ the ideas of Moreau [in New Variational Techniques in Mathematical Physics (Centro Internaz. Mat. Estivo (CIME), II Ciclo, Bressanone, 1973), Edizioni Cremonese, Rome, 1974, pp. 171-322] to apply our theorem to a system of elastoplastic springs with a displacement-controlled loading. We show that verifying the condition of the theorem ultimately leads to the following two problems: (i) identifying the active vertex “A” or the active face “A” of the polyhedron that the vector c(t) points at, (ii) computing the distance from c(t) to the normal cone to the polyhedron at “A.” We provide a computational guide for solving problems (i)-(ii) in the case of an arbitrary elastoplastic system and apply it to a particular example. Due to the simplicity of the particular example, we can solve (i)-(ii) by the methods of linear algebra and basic combinatorics.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-14736S" target="_blank" >GA20-14736S: Modelování hystereze v matematickém inženýrství</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIAM Journal on Control and Optimization
ISSN
0363-0129
e-ISSN
1095-7138
Svazek periodika
60
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
27
Strana od-do
1320-1346
Kód UT WoS článku
000809668500004
EID výsledku v databázi Scopus
2-s2.0-85130624676