Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On complemented copies of the space c(0) in spaces C-p(X x Y)

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00563648" target="_blank" >RIV/67985840:_____/22:00563648 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/s11856-022-2334-2" target="_blank" >https://doi.org/10.1007/s11856-022-2334-2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11856-022-2334-2" target="_blank" >10.1007/s11856-022-2334-2</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On complemented copies of the space c(0) in spaces C-p(X x Y)

  • Popis výsledku v původním jazyce

    Cembranos and Freniche proved that for every two infinite compact Hausdorff spaces X and Y the Banach space C(X × Y) of continuous real-valued functions on X × Y endowed with the supremum norm contains a complemented copy of the Banach space c0. We extend this theorem to the class of Cp-spaces, that is, we prove that for all infinite Tychonoff spaces X and Y the space Cp (X × Y) of continuous functions on X × Y endowed with the pointwise topology contains either a complemented copy of ℝω or a complemented copy of the space (c0)p = {(xn)n∈ω ∈ ℝω: xn → 0}, both endowed with the product topology. We show that the latter case holds always when X × Y is pseudocompact. On the other hand, assuming the Continuum Hypothesis (or even a weaker set-theoretic assumption), we provide an example of a pseudocompact space X such that Cp(X × X) does not contain a complemented copy of (c0)p. As a corollary to the first result, we show that for all infinite Tychonoff spaces X and Y the space Cp(X × Y) is linearly homeomorphic to the space Cp(X × Y) × ℝ, although, as proved earlier by Marciszewski, there exists an infinite compact space X such that Cp(X) cannot be mapped onto Cp(X) × ℝ by a continuous linear surjection. This provides a positive answer to a problem of Arkhangel’ski for spaces of the form Cp(X × Y). Another corollary-analogous to the classical Rosenthal-Lacey theorem for Banach spaces C(X) with X compact and Hausdorff—asserts that for every infinite Tychonoff spaces X and Y the space Ck(X × Y) of continuous functions on X × Y endowed with the compact-open topology admits a quotient map onto a space isomorphic to one of the following three spaces: ℝω, (c0)p or c0.

  • Název v anglickém jazyce

    On complemented copies of the space c(0) in spaces C-p(X x Y)

  • Popis výsledku anglicky

    Cembranos and Freniche proved that for every two infinite compact Hausdorff spaces X and Y the Banach space C(X × Y) of continuous real-valued functions on X × Y endowed with the supremum norm contains a complemented copy of the Banach space c0. We extend this theorem to the class of Cp-spaces, that is, we prove that for all infinite Tychonoff spaces X and Y the space Cp (X × Y) of continuous functions on X × Y endowed with the pointwise topology contains either a complemented copy of ℝω or a complemented copy of the space (c0)p = {(xn)n∈ω ∈ ℝω: xn → 0}, both endowed with the product topology. We show that the latter case holds always when X × Y is pseudocompact. On the other hand, assuming the Continuum Hypothesis (or even a weaker set-theoretic assumption), we provide an example of a pseudocompact space X such that Cp(X × X) does not contain a complemented copy of (c0)p. As a corollary to the first result, we show that for all infinite Tychonoff spaces X and Y the space Cp(X × Y) is linearly homeomorphic to the space Cp(X × Y) × ℝ, although, as proved earlier by Marciszewski, there exists an infinite compact space X such that Cp(X) cannot be mapped onto Cp(X) × ℝ by a continuous linear surjection. This provides a positive answer to a problem of Arkhangel’ski for spaces of the form Cp(X × Y). Another corollary-analogous to the classical Rosenthal-Lacey theorem for Banach spaces C(X) with X compact and Hausdorff—asserts that for every infinite Tychonoff spaces X and Y the space Ck(X × Y) of continuous functions on X × Y endowed with the compact-open topology admits a quotient map onto a space isomorphic to one of the following three spaces: ℝω, (c0)p or c0.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GF20-22230L" target="_blank" >GF20-22230L: Banachovy prostory spojitých a lipschitzovských funkcí</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Israel Journal of Mathematics

  • ISSN

    0021-2172

  • e-ISSN

    1565-8511

  • Svazek periodika

    250

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    IL - Stát Izrael

  • Počet stran výsledku

    39

  • Strana od-do

    139-177

  • Kód UT WoS článku

    000839567400005

  • EID výsledku v databázi Scopus

    2-s2.0-85135791255