Convergence and error analysis of compressible fluid flows with random data: Monte Carlo method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F22%3A00569928" target="_blank" >RIV/67985840:_____/22:00569928 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1142/S0218202522500671" target="_blank" >https://doi.org/10.1142/S0218202522500671</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0218202522500671" target="_blank" >10.1142/S0218202522500671</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Convergence and error analysis of compressible fluid flows with random data: Monte Carlo method
Popis výsledku v původním jazyce
The goal of this paper is to study convergence and error estimates of the Monte Carlo method for the Navier-Stokes equations with random data. To discretize in space and time, the Monte Carlo method is combined with a suitable deterministic discretization scheme, such as a finite volume (FV) method. We assume that the initial data, force and the viscosity coefficients are random variables and study both the statistical convergence rates as well as the approximation errors. Since the compressible Navier-Stokes equations are not known to be uniquely solvable in the class of global weak solutions, we cannot apply pathwise arguments to analyze the random Navier-Stokes equations. Instead, we have to apply intrinsic stochastic compactness arguments via the Skorokhod representation theorem and the Gyöngy-Krylov method. Assuming that the numerical solutions are bounded in probability, we prove that the Monte Carlo FV method converges to a statistical strong solution. The convergence rates are discussed as well. Numerical experiments illustrate theoretical results.
Název v anglickém jazyce
Convergence and error analysis of compressible fluid flows with random data: Monte Carlo method
Popis výsledku anglicky
The goal of this paper is to study convergence and error estimates of the Monte Carlo method for the Navier-Stokes equations with random data. To discretize in space and time, the Monte Carlo method is combined with a suitable deterministic discretization scheme, such as a finite volume (FV) method. We assume that the initial data, force and the viscosity coefficients are random variables and study both the statistical convergence rates as well as the approximation errors. Since the compressible Navier-Stokes equations are not known to be uniquely solvable in the class of global weak solutions, we cannot apply pathwise arguments to analyze the random Navier-Stokes equations. Instead, we have to apply intrinsic stochastic compactness arguments via the Skorokhod representation theorem and the Gyöngy-Krylov method. Assuming that the numerical solutions are bounded in probability, we prove that the Monte Carlo FV method converges to a statistical strong solution. The convergence rates are discussed as well. Numerical experiments illustrate theoretical results.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA21-02411S" target="_blank" >GA21-02411S: Řešení nekorektních úloh pohybu stlačitelných tekutin</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematical Models and Methods in Applied Sciences
ISSN
0218-2025
e-ISSN
1793-6314
Svazek periodika
32
Číslo periodika v rámci svazku
14
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
39
Strana od-do
2887-2925
Kód UT WoS článku
000900774200002
EID výsledku v databázi Scopus
2-s2.0-85144563178