Reduction cohomology of Riemann surfaces
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00575120" target="_blank" >RIV/67985840:_____/23:00575120 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1142/S0129055X23300054" target="_blank" >https://doi.org/10.1142/S0129055X23300054</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1142/S0129055X23300054" target="_blank" >10.1142/S0129055X23300054</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Reduction cohomology of Riemann surfaces
Popis výsledku v původním jazyce
We study the algebraic conditions leading to the chain property of complexes for vertex operator algebra n-point functions (with their convergence assumed) with differential being defined through reduction formulas. The notion of the reduction cohomology of Riemann surfaces is introduced. Algebraic, geometrical, and cohomological meanings of reduction formulas are clarified. A counterpart of the Bott-Segal theorem for Riemann surfaces in terms of the reductions cohomology is proven. It is shown that the reduction cohomology is given by the cohomology of n-point connections over the vertex operator algebra bundle defined on a genus g Riemann surface S-(g). The reduction cohomology for a vertex operator algebra with formal parameters identified with local coordinates around marked points on S-(g) is found in terms of the space of analytical continuations of solutions to Knizhnik-Zamolodchikov equations. For the reduction cohomology, the Euler-Poincare formula is derived. Examples for various genera and vertex operator cluster algebras are provided.
Název v anglickém jazyce
Reduction cohomology of Riemann surfaces
Popis výsledku anglicky
We study the algebraic conditions leading to the chain property of complexes for vertex operator algebra n-point functions (with their convergence assumed) with differential being defined through reduction formulas. The notion of the reduction cohomology of Riemann surfaces is introduced. Algebraic, geometrical, and cohomological meanings of reduction formulas are clarified. A counterpart of the Bott-Segal theorem for Riemann surfaces in terms of the reductions cohomology is proven. It is shown that the reduction cohomology is given by the cohomology of n-point connections over the vertex operator algebra bundle defined on a genus g Riemann surface S-(g). The reduction cohomology for a vertex operator algebra with formal parameters identified with local coordinates around marked points on S-(g) is found in terms of the space of analytical continuations of solutions to Knizhnik-Zamolodchikov equations. For the reduction cohomology, the Euler-Poincare formula is derived. Examples for various genera and vertex operator cluster algebras are provided.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Reviews in Mathematical Physics
ISSN
0129-055X
e-ISSN
1793-6659
Svazek periodika
35
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
SG - Singapurská republika
Počet stran výsledku
32
Strana od-do
2330005
Kód UT WoS článku
000990052000001
EID výsledku v databázi Scopus
2-s2.0-85171766528