Cosimplicial monoids and deformation theory of tensor categories
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00577958" target="_blank" >RIV/67985840:_____/23:00577958 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/23:10474461
Výsledek na webu
<a href="https://doi.org/10.4171/jncg/512" target="_blank" >https://doi.org/10.4171/jncg/512</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4171/JNCG/512" target="_blank" >10.4171/JNCG/512</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cosimplicial monoids and deformation theory of tensor categories
Popis výsledku v původním jazyce
We introduce the notion of n-commutativity (0 ≤ n ≤ ∞) for cosimplicial monoids in a symmetric monoidal category V, where n = 0 corresponds to just cosimplicial monoids in V, while n=∞ corresponds to commutative cosimplicial monoids. When V has a monoidal model structure, we endow (under some mild technical conditions) the total object of an n-cosimplicial monoid with a natural and very explicit En+1-algebra structure. Our main applications are to the deformation theory of tensor categories and tensor functors.We show that the deformation complex of a tensor functor is a total complex of a 1-commutative cosimplicial monoid and, hence, has an E2-algebra structure similar to the E2-structure on Hochschild complex of an associative algebra provided by Deligne’s conjecture. We further demonstrate that the deformation complex of a tensor category is the total complex of a 2-commutative cosimplicial monoid and, therefore, is naturally an E3-algebra. We make these structures very explicit through a language of Delannoy paths and their noncommutative liftings. We investigate how these structures manifest themselves in concrete examples.
Název v anglickém jazyce
Cosimplicial monoids and deformation theory of tensor categories
Popis výsledku anglicky
We introduce the notion of n-commutativity (0 ≤ n ≤ ∞) for cosimplicial monoids in a symmetric monoidal category V, where n = 0 corresponds to just cosimplicial monoids in V, while n=∞ corresponds to commutative cosimplicial monoids. When V has a monoidal model structure, we endow (under some mild technical conditions) the total object of an n-cosimplicial monoid with a natural and very explicit En+1-algebra structure. Our main applications are to the deformation theory of tensor categories and tensor functors.We show that the deformation complex of a tensor functor is a total complex of a 1-commutative cosimplicial monoid and, hence, has an E2-algebra structure similar to the E2-structure on Hochschild complex of an associative algebra provided by Deligne’s conjecture. We further demonstrate that the deformation complex of a tensor category is the total complex of a 2-commutative cosimplicial monoid and, therefore, is naturally an E3-algebra. We make these structures very explicit through a language of Delannoy paths and their noncommutative liftings. We investigate how these structures manifest themselves in concrete examples.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-28628X" target="_blank" >GX19-28628X: Homotopické a homologické metody a nástroje úzce související s matematickou fyzikou</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Noncommutative Geometry
ISSN
1661-6952
e-ISSN
1661-6960
Svazek periodika
17
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
63
Strana od-do
1167-1229
Kód UT WoS článku
001108695100007
EID výsledku v databázi Scopus
2-s2.0-85175016218