On the motion of a pendulum with a cavity filled with a compressible fluid
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00578454" target="_blank" >RIV/67985840:_____/23:00578454 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1063/5.0143910" target="_blank" >https://doi.org/10.1063/5.0143910</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0143910" target="_blank" >10.1063/5.0143910</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On the motion of a pendulum with a cavity filled with a compressible fluid
Popis výsledku v původním jazyce
We study the motion of the coupled system, S , constituted by a physical pendulum, B , with an interior cavity entirely filled with a viscous, compressible fluid, F . The system is constrained to rotate about a horizontal axis. The presence of the fluid may strongly affect the motion of B . In fact, we prove that, under appropriate assumptions, the fluid acts as a damper, namely, S must eventually reach a rest-state. Such a state is characterized by a suitable time-independent density distribution of F and a corresponding equilibrium position of the center of mass of S . These results are proved in the very general class of weak solutions and do not require any restriction on the initial data, other than having a finite energy. We complement our findings with some numerical tests. The latter show, among other things, the interesting property that “large” compressibility favors the damping effect, since it drastically reduces the time that S takes to go to rest.
Název v anglickém jazyce
On the motion of a pendulum with a cavity filled with a compressible fluid
Popis výsledku anglicky
We study the motion of the coupled system, S , constituted by a physical pendulum, B , with an interior cavity entirely filled with a viscous, compressible fluid, F . The system is constrained to rotate about a horizontal axis. The presence of the fluid may strongly affect the motion of B . In fact, we prove that, under appropriate assumptions, the fluid acts as a damper, namely, S must eventually reach a rest-state. Such a state is characterized by a suitable time-independent density distribution of F and a corresponding equilibrium position of the center of mass of S . These results are proved in the very general class of weak solutions and do not require any restriction on the initial data, other than having a finite energy. We complement our findings with some numerical tests. The latter show, among other things, the interesting property that “large” compressibility favors the damping effect, since it drastically reduces the time that S takes to go to rest.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA22-01591S" target="_blank" >GA22-01591S: Matematická teorie a numerická analýza rovnic vazkých newtonovských stlačitelných tekutin</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Mathematical Physics
ISSN
0022-2488
e-ISSN
1089-7658
Svazek periodika
64
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
21
Strana od-do
111501
Kód UT WoS článku
001097473500007
EID výsledku v databázi Scopus
2-s2.0-85176123436