Bounds on functionality and symmetric difference - two intriguing graph parameters
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F23%3A00579481" target="_blank" >RIV/67985840:_____/23:00579481 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21240/23:00369027 RIV/00216208:11320/23:10474496
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-43380-1_22" target="_blank" >https://doi.org/10.1007/978-3-031-43380-1_22</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-43380-1_22" target="_blank" >10.1007/978-3-031-43380-1_22</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bounds on functionality and symmetric difference - two intriguing graph parameters
Popis výsledku v původním jazyce
[Alecu et al.: Graph functionality, JCTB2021] define functionality, a graph parameter that generalizes graph degeneracy. They research the relation of functionality to many other graph parameters (tree-width, clique-width, VC-dimension, etc.). Extending their research, we prove a logarithmic lower bound for functionality of random graph G(n, p) for large range of p. Previously known graphs have functionality logarithmic in number of vertices. We show that for every graph G on n vertices we have fun (Formula presented) and we give a nearly matching (Formula presented) -lower bound provided by projective planes. Further, we study a related graph parameter symmetric difference, the minimum of (Formula presented) over all pairs of vertices of the “worst possible” induced subgraph. It was observed by Alecu et al. that (Formula presented) for every graph G. We compare fun and sd for the class INT of interval graphs and CA of circular-arc graphs. We let INTn denote the n-vertex interval graphs, similarly for CAn. Alecu et al. ask, whether fun (INT) is bounded. Dallard et al. answer this positively in a recent preprint. On the other hand, we show that (Formula presented). For the related class (Formula presented) we show that (Formula presented). We propose a follow-up question: is (Formula presented) bounded?
Název v anglickém jazyce
Bounds on functionality and symmetric difference - two intriguing graph parameters
Popis výsledku anglicky
[Alecu et al.: Graph functionality, JCTB2021] define functionality, a graph parameter that generalizes graph degeneracy. They research the relation of functionality to many other graph parameters (tree-width, clique-width, VC-dimension, etc.). Extending their research, we prove a logarithmic lower bound for functionality of random graph G(n, p) for large range of p. Previously known graphs have functionality logarithmic in number of vertices. We show that for every graph G on n vertices we have fun (Formula presented) and we give a nearly matching (Formula presented) -lower bound provided by projective planes. Further, we study a related graph parameter symmetric difference, the minimum of (Formula presented) over all pairs of vertices of the “worst possible” induced subgraph. It was observed by Alecu et al. that (Formula presented) for every graph G. We compare fun and sd for the class INT of interval graphs and CA of circular-arc graphs. We let INTn denote the n-vertex interval graphs, similarly for CAn. Alecu et al. ask, whether fun (INT) is bounded. Dallard et al. answer this positively in a recent preprint. On the other hand, we show that (Formula presented). For the related class (Formula presented) we show that (Formula presented). We propose a follow-up question: is (Formula presented) bounded?
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Graph-Theoretic Concepts in Computer Science
ISBN
978-3-031-43379-5
ISSN
0302-9743
e-ISSN
—
Počet stran výsledku
14
Strana od-do
305-318
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Fribourg
Datum konání akce
28. 6. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
001162209000022