Local exact controllability to the steady states of a parabolic system with coupled nonlinear boundary conditions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00577243" target="_blank" >RIV/67985840:_____/24:00577243 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3934/mcrf.2023035" target="_blank" >https://doi.org/10.3934/mcrf.2023035</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3934/mcrf.2023035" target="_blank" >10.3934/mcrf.2023035</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Local exact controllability to the steady states of a parabolic system with coupled nonlinear boundary conditions
Popis výsledku v původním jazyce
In this article, we study the boundary local exact controllability to any steady state of a one˦dimensional parabolic system with coupled nonlinear boundary conditions by means of only one control. The significant point is that the state components are interacting only at the boundary points with the assistance of some nonlinear terms. We consider two cases: either the control function is acting through a mixed nonlinear boundary condition on the first component or through a Neumann condition on the second component. The results are slightly different in the two cases. To study this problem, we first consider the associated linearized systems around the given steady state. The method of moments let us to prove its controllability and to obtain a suitable estimate of the control cost of the form MeM(T+ T1). To this end, we need to develop a precise spectral analysis of a non self˦adjoint operator. Thanks to those preliminary results, we can use the source term method developed in [29], followed by the Banach fixed point argument, to obtain the small˦time boundary local exact controllability to the steady state for the original system.
Název v anglickém jazyce
Local exact controllability to the steady states of a parabolic system with coupled nonlinear boundary conditions
Popis výsledku anglicky
In this article, we study the boundary local exact controllability to any steady state of a one˦dimensional parabolic system with coupled nonlinear boundary conditions by means of only one control. The significant point is that the state components are interacting only at the boundary points with the assistance of some nonlinear terms. We consider two cases: either the control function is acting through a mixed nonlinear boundary condition on the first component or through a Neumann condition on the second component. The results are slightly different in the two cases. To study this problem, we first consider the associated linearized systems around the given steady state. The method of moments let us to prove its controllability and to obtain a suitable estimate of the control cost of the form MeM(T+ T1). To this end, we need to develop a precise spectral analysis of a non self˦adjoint operator. Thanks to those preliminary results, we can use the source term method developed in [29], followed by the Banach fixed point argument, to obtain the small˦time boundary local exact controllability to the steady state for the original system.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GC22-08633J" target="_blank" >GC22-08633J: Kvalitativní teorie MHD a příbuzných rovnic</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Mathematical Control and Related Fields
ISSN
2156-8472
e-ISSN
2156-8499
Svazek periodika
14
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
42
Strana od-do
1086-1127
Kód UT WoS článku
001081933700001
EID výsledku v databázi Scopus
2-s2.0-85197442566