Local null-controllability of a two-parabolic nonlinear system with coupled boundary conditions by a Neumann control
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00583247" target="_blank" >RIV/67985840:_____/24:00583247 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3934/eect.2023059" target="_blank" >https://doi.org/10.3934/eect.2023059</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3934/eect.2023059" target="_blank" >10.3934/eect.2023059</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Local null-controllability of a two-parabolic nonlinear system with coupled boundary conditions by a Neumann control
Popis výsledku v původním jazyce
This article is concerned with the local boundary null-controll-ability of a 1-D system of two-parabolic nonlinear equations (often referred as reaction-diffusion system) with coupled boundary conditions by means of a scalar control. The control force is exerted on one of the two state components through a Neumann condition at the left end of the boundary while the other component simply satisfies the homogeneous Neumann condition at that point. On the other hand, at the right end of the boundary, the states are coupled through the so-called δ′-type condition. Upon linearization around the stationary point (0, 0), we apply the well-known moments method to prove the global null-controllability of the associated linearized system with explicit control cost MeM/T as T → 0+. Then, we show the local null-controllability of the main system by employing the source term method developed in [29] followed by the Banach fixed point theorem.
Název v anglickém jazyce
Local null-controllability of a two-parabolic nonlinear system with coupled boundary conditions by a Neumann control
Popis výsledku anglicky
This article is concerned with the local boundary null-controll-ability of a 1-D system of two-parabolic nonlinear equations (often referred as reaction-diffusion system) with coupled boundary conditions by means of a scalar control. The control force is exerted on one of the two state components through a Neumann condition at the left end of the boundary while the other component simply satisfies the homogeneous Neumann condition at that point. On the other hand, at the right end of the boundary, the states are coupled through the so-called δ′-type condition. Upon linearization around the stationary point (0, 0), we apply the well-known moments method to prove the global null-controllability of the associated linearized system with explicit control cost MeM/T as T → 0+. Then, we show the local null-controllability of the main system by employing the source term method developed in [29] followed by the Banach fixed point theorem.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GC22-08633J" target="_blank" >GC22-08633J: Kvalitativní teorie MHD a příbuzných rovnic</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Evolution Equations and Control Theory
ISSN
2163-2480
e-ISSN
2163-2480
Svazek periodika
13
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
29
Strana od-do
587-615
Kód UT WoS článku
001126654100001
EID výsledku v databázi Scopus
2-s2.0-85184734570