Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Weighted Bergman kernels for nearly holomorphic functions on bounded symmetric domains

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00579463" target="_blank" >RIV/67985840:_____/24:00579463 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/47813059:19610/24:A0000152

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.jfa.2023.110213" target="_blank" >https://doi.org/10.1016/j.jfa.2023.110213</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jfa.2023.110213" target="_blank" >10.1016/j.jfa.2023.110213</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Weighted Bergman kernels for nearly holomorphic functions on bounded symmetric domains

  • Popis výsledku v původním jazyce

    We identify the standard weighted Bergman kernels of spaces of nearly holomorphic functions, in the sense of Shimura, on bounded symmetric domains. This also yields a description of the analogous kernels for spaces of “invariantly-polyanalytic” functions — a generalization of the ordinary polyanalytic functions on the ball which seems to be the most appropriate one from the point of view of holomorphic invariance. In both cases, the kernels turn out to be given by certain spherical functions, or equivalently Heckman-Opdam hypergeometric functions, and a conjecture relating some of these to a Faraut-Koranyi hypergeometric function is formulated based on the study of low rank situations. Finally, analogous results are established also for compact Hermitian symmetric spaces, where explicit formulas in terms of multivariable Jacobi polynomials are given.

  • Název v anglickém jazyce

    Weighted Bergman kernels for nearly holomorphic functions on bounded symmetric domains

  • Popis výsledku anglicky

    We identify the standard weighted Bergman kernels of spaces of nearly holomorphic functions, in the sense of Shimura, on bounded symmetric domains. This also yields a description of the analogous kernels for spaces of “invariantly-polyanalytic” functions — a generalization of the ordinary polyanalytic functions on the ball which seems to be the most appropriate one from the point of view of holomorphic invariance. In both cases, the kernels turn out to be given by certain spherical functions, or equivalently Heckman-Opdam hypergeometric functions, and a conjecture relating some of these to a Faraut-Koranyi hypergeometric function is formulated based on the study of low rank situations. Finally, analogous results are established also for compact Hermitian symmetric spaces, where explicit formulas in terms of multivariable Jacobi polynomials are given.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA21-27941S" target="_blank" >GA21-27941S: Teorie funkcí a příbuzné operátory na komplexních oblastech</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Functional Analysis

  • ISSN

    0022-1236

  • e-ISSN

    1096-0783

  • Svazek periodika

    286

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    47

  • Strana od-do

    110213

  • Kód UT WoS článku

    001109009500001

  • EID výsledku v databázi Scopus

    2-s2.0-85175806248