Some classes of topological spaces extending the class of Δ-spaces
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00580514" target="_blank" >RIV/67985840:_____/24:00580514 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1090/proc/16661" target="_blank" >https://doi.org/10.1090/proc/16661</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/proc/16661" target="_blank" >10.1090/proc/16661</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Some classes of topological spaces extending the class of Δ-spaces
Popis výsledku v původním jazyce
A study of the class Delta consisting of topological Delta-spaces was originated by Jerzy Kakol and Arkady Leiderman [Proc. Amer. Math. Soc. Ser. B 8 (2021), pp. 86-99, Proc. Amer. Math. Soc. Ser. B 8 (2021), pp. 267-280]. The main purpose of this paper is to introduce and investigate new classes Delta(2) subset of Delta(1) properly containing Delta.nWe observe that for every first-countable X the following equivalences hold: X is an element of Delta(1) iff X is an element of Delta(2) iff each countable subset of X is G(delta). Thus, new proposed concepts provide a natural extension of the family of all lambda-sets beyond the separable metrizable spaces.nWe prove that (1) A pseudocompact space X belongs to the class Delta(1) iff countable subsets of X are scattered. (2) Every regular scattered space belongs to the class Delta(2).nWe investigate whether the classes Delta(1) and Delta(2) are invariant under the basic topological operations. Similarly to Delta, both classes Delta(1) and Delta(2) are invariant under the operation of taking countable unions of closed subspaces. In contrast to Delta, they are not preserved by closed continuous images.nLet Y be l-dominated by X, i.e. C-p(X) admits a continuous linear map onto C-p(Y). We show that Y is an element of Delta(1) whenever X is an element of Delta(1). Moreover, we establish that if Y is l-dominated by a compact scattered space X, then Y is a pseudocompact space such that its Stone-Cech compactification beta Y is scattered.
Název v anglickém jazyce
Some classes of topological spaces extending the class of Δ-spaces
Popis výsledku anglicky
A study of the class Delta consisting of topological Delta-spaces was originated by Jerzy Kakol and Arkady Leiderman [Proc. Amer. Math. Soc. Ser. B 8 (2021), pp. 86-99, Proc. Amer. Math. Soc. Ser. B 8 (2021), pp. 267-280]. The main purpose of this paper is to introduce and investigate new classes Delta(2) subset of Delta(1) properly containing Delta.nWe observe that for every first-countable X the following equivalences hold: X is an element of Delta(1) iff X is an element of Delta(2) iff each countable subset of X is G(delta). Thus, new proposed concepts provide a natural extension of the family of all lambda-sets beyond the separable metrizable spaces.nWe prove that (1) A pseudocompact space X belongs to the class Delta(1) iff countable subsets of X are scattered. (2) Every regular scattered space belongs to the class Delta(2).nWe investigate whether the classes Delta(1) and Delta(2) are invariant under the basic topological operations. Similarly to Delta, both classes Delta(1) and Delta(2) are invariant under the operation of taking countable unions of closed subspaces. In contrast to Delta, they are not preserved by closed continuous images.nLet Y be l-dominated by X, i.e. C-p(X) admits a continuous linear map onto C-p(Y). We show that Y is an element of Delta(1) whenever X is an element of Delta(1). Moreover, we establish that if Y is l-dominated by a compact scattered space X, then Y is a pseudocompact space such that its Stone-Cech compactification beta Y is scattered.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Proceedings of the American Mathematical Society
ISSN
0002-9939
e-ISSN
1088-6826
Svazek periodika
152
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
883-898
Kód UT WoS článku
001114291400001
EID výsledku v databázi Scopus
2-s2.0-85181562351