Basic properties of X for which the space Cp(X) is distinguished
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00549289" target="_blank" >RIV/67985840:_____/21:00549289 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1090/bproc/95" target="_blank" >https://doi.org/10.1090/bproc/95</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1090/bproc/95" target="_blank" >10.1090/bproc/95</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Basic properties of X for which the space Cp(X) is distinguished
Popis výsledku v původním jazyce
In our paper [Proc. Amer. Math. Soc. Ser. B 8 (2021), pp. 86-99] we showed that a Tychonoff space X is a Δ-space (in the sense of R. W. Knight [Trans. Amer. Math. Soc. 339 (1993), pp. 45-60], G. M. Reed [Fund. Math. 110 (1980), pp. 145-152]) if and only if the locally convex space Cp(X) is distinguished. Continuing this research, we investigate whether the class Δ of Δ-spaces is invariant under the basic topological operations. We prove that if X ∈ Δ and ϕ : X → Y is a continuous surjection such that ϕ(F) is an Fσ-set in Y for every closed set F ⊂ X, then also Y ∈ Δ. As a consequence, if X is a countable union of closed subspaces Xi such that each Xi ∈ Δ, then also X ∈ Δ. In particular, σ-product of any family of scattered Eberlein compact spaces is a Δ-space and the product of a Δ-space with a countable space is a Δ-space. Our results give answers to several open problems posed by us [Proc. Amer. Math. Soc. Ser. B 8 (2021), pp. 86-99]. Let T : Cp(X) −→ Cp(Y ) be a continuous linear surjection. We observe that T admits an extension to a linear continuous operator T from RX onto RY and deduce that Y is a Δ-space whenever X is. Similarly, assuming that X and Y are metrizable spaces, we show that Y is a Q-set whenever X is. Making use of obtained results, we provide a very short proof for the claim that every compact Δ-space has countable tightness. As a consequence, under Proper Forcing Axiom every compact Δ-space is sequential. In the article we pose a dozen open questions.
Název v anglickém jazyce
Basic properties of X for which the space Cp(X) is distinguished
Popis výsledku anglicky
In our paper [Proc. Amer. Math. Soc. Ser. B 8 (2021), pp. 86-99] we showed that a Tychonoff space X is a Δ-space (in the sense of R. W. Knight [Trans. Amer. Math. Soc. 339 (1993), pp. 45-60], G. M. Reed [Fund. Math. 110 (1980), pp. 145-152]) if and only if the locally convex space Cp(X) is distinguished. Continuing this research, we investigate whether the class Δ of Δ-spaces is invariant under the basic topological operations. We prove that if X ∈ Δ and ϕ : X → Y is a continuous surjection such that ϕ(F) is an Fσ-set in Y for every closed set F ⊂ X, then also Y ∈ Δ. As a consequence, if X is a countable union of closed subspaces Xi such that each Xi ∈ Δ, then also X ∈ Δ. In particular, σ-product of any family of scattered Eberlein compact spaces is a Δ-space and the product of a Δ-space with a countable space is a Δ-space. Our results give answers to several open problems posed by us [Proc. Amer. Math. Soc. Ser. B 8 (2021), pp. 86-99]. Let T : Cp(X) −→ Cp(Y ) be a continuous linear surjection. We observe that T admits an extension to a linear continuous operator T from RX onto RY and deduce that Y is a Δ-space whenever X is. Similarly, assuming that X and Y are metrizable spaces, we show that Y is a Q-set whenever X is. Making use of obtained results, we provide a very short proof for the claim that every compact Δ-space has countable tightness. As a consequence, under Proper Forcing Axiom every compact Δ-space is sequential. In the article we pose a dozen open questions.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GF20-22230L" target="_blank" >GF20-22230L: Banachovy prostory spojitých a lipschitzovských funkcí</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Proceedings of the American Mathematical Society, Ser. B
ISSN
2330-1511
e-ISSN
2330-1511
Svazek periodika
8
Číslo periodika v rámci svazku
September
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
14
Strana od-do
267-280
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—