Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

On linear continuous operators between distinguished spaces Cp(X)

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F21%3A00546784" target="_blank" >RIV/67985840:_____/21:00546784 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/s13398-021-01121-4" target="_blank" >https://doi.org/10.1007/s13398-021-01121-4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s13398-021-01121-4" target="_blank" >10.1007/s13398-021-01121-4</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    On linear continuous operators between distinguished spaces Cp(X)

  • Popis výsledku v původním jazyce

    As proved in Ka̧kol and Leiderman (Proc AMS Ser B 8:86–99, 2021), for a Tychonoff space X, a locally convex space Cp(X) is distinguished if and only if X is a Δ -space. If there exists a linear continuous surjective mapping T: Cp(X) → Cp(Y) and Cp(X) is distinguished, then Cp(Y) also is distinguished (Ka̧kol and Leiderman Proc AMS Ser B, 2021). Firstly, in this paper we explore the following question: Under which conditions the operator T: Cp(X) → Cp(Y) above is open? Secondly, we devote a special attention to concrete distinguished spaces Cp([1 , α]) , where α is a countable ordinal number. A complete characterization of all Y which admit a linear continuous surjective mapping T: Cp([1 , α]) → Cp(Y) is given. We also observe that for every countable ordinal α all closed linear subspaces of Cp([1 , α]) are distinguished, thereby answering an open question posed in Ka̧kol and Leiderman (Proc AMS Ser B, 2021).

  • Název v anglickém jazyce

    On linear continuous operators between distinguished spaces Cp(X)

  • Popis výsledku anglicky

    As proved in Ka̧kol and Leiderman (Proc AMS Ser B 8:86–99, 2021), for a Tychonoff space X, a locally convex space Cp(X) is distinguished if and only if X is a Δ -space. If there exists a linear continuous surjective mapping T: Cp(X) → Cp(Y) and Cp(X) is distinguished, then Cp(Y) also is distinguished (Ka̧kol and Leiderman Proc AMS Ser B, 2021). Firstly, in this paper we explore the following question: Under which conditions the operator T: Cp(X) → Cp(Y) above is open? Secondly, we devote a special attention to concrete distinguished spaces Cp([1 , α]) , where α is a countable ordinal number. A complete characterization of all Y which admit a linear continuous surjective mapping T: Cp([1 , α]) → Cp(Y) is given. We also observe that for every countable ordinal α all closed linear subspaces of Cp([1 , α]) are distinguished, thereby answering an open question posed in Ka̧kol and Leiderman (Proc AMS Ser B, 2021).

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GF20-22230L" target="_blank" >GF20-22230L: Banachovy prostory spojitých a lipschitzovských funkcí</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales

  • ISSN

    1578-7303

  • e-ISSN

    1579-1505

  • Svazek periodika

    115

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    ES - Španělské království

  • Počet stran výsledku

    11

  • Strana od-do

    199

  • Kód UT WoS článku

    000698668600001

  • EID výsledku v databázi Scopus

    2-s2.0-85115337368