Fuzzy multiplier, sum and intersection rules in non-Lipschitzian settings: Decoupling approach revisited
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00580563" target="_blank" >RIV/67985840:_____/24:00580563 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.jmaa.2023.127985" target="_blank" >https://doi.org/10.1016/j.jmaa.2023.127985</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2023.127985" target="_blank" >10.1016/j.jmaa.2023.127985</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fuzzy multiplier, sum and intersection rules in non-Lipschitzian settings: Decoupling approach revisited
Popis výsledku v původním jazyce
We revisit the decoupling approach widely used (often intuitively) in nonlinear analysis and optimization and initially formalized about a quarter of a century ago by Borwein & Zhu, Borwein & Ioffe and Lassonde. It allows one to streamline proofs of necessary optimality conditions and calculus relations, unify and simplify the respective statements, clarify and in many cases weaken the assumptions. In this paper we study weaker concepts of quasiuniform infimum, quasiuniform lower semicontinuity and quasiuniform minimum, putting them into the context of the general theory developed by the aforementioned authors. Along the way, we unify the terminology and notation and fill in some gaps in the general theory. We establish rather general primal and dual necessary conditions characterizing quasiuniform epsilon-minima of the sum of two functions. The obtained fuzzy multiplier rules are formulated in general Banach spaces in terms of Clarke subdifferentials and in Asplund spaces in terms of Frechet subdifferentials. The mentioned fuzzy multiplier rules naturally lead to certain fuzzy subdifferential calculus results. An application from sparse optimal control illustrates applicability of the obtained findings.
Název v anglickém jazyce
Fuzzy multiplier, sum and intersection rules in non-Lipschitzian settings: Decoupling approach revisited
Popis výsledku anglicky
We revisit the decoupling approach widely used (often intuitively) in nonlinear analysis and optimization and initially formalized about a quarter of a century ago by Borwein & Zhu, Borwein & Ioffe and Lassonde. It allows one to streamline proofs of necessary optimality conditions and calculus relations, unify and simplify the respective statements, clarify and in many cases weaken the assumptions. In this paper we study weaker concepts of quasiuniform infimum, quasiuniform lower semicontinuity and quasiuniform minimum, putting them into the context of the general theory developed by the aforementioned authors. Along the way, we unify the terminology and notation and fill in some gaps in the general theory. We establish rather general primal and dual necessary conditions characterizing quasiuniform epsilon-minima of the sum of two functions. The obtained fuzzy multiplier rules are formulated in general Banach spaces in terms of Clarke subdifferentials and in Asplund spaces in terms of Frechet subdifferentials. The mentioned fuzzy multiplier rules naturally lead to certain fuzzy subdifferential calculus results. An application from sparse optimal control illustrates applicability of the obtained findings.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GF20-22230L" target="_blank" >GF20-22230L: Banachovy prostory spojitých a lipschitzovských funkcí</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Mathematical Analysis and Applications
ISSN
0022-247X
e-ISSN
1096-0813
Svazek periodika
532
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
39
Strana od-do
127985
Kód UT WoS článku
001128354400001
EID výsledku v databázi Scopus
2-s2.0-85182213029