From flip processes to dynamical systems on graphons
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00581049" target="_blank" >RIV/67985840:_____/24:00581049 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985807:_____/24:00581049 RIV/00216224:14330/24:00139103
Výsledek na webu
<a href="https://doi.org/10.1214/23-AIHP1405" target="_blank" >https://doi.org/10.1214/23-AIHP1405</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1214/23-AIHP1405" target="_blank" >10.1214/23-AIHP1405</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
From flip processes to dynamical systems on graphons
Popis výsledku v původním jazyce
We introduce a class of random graph processes, which we call flip processes. Each such process is given by a rule which is a function R:H(k)→H(k) from all labeled k-vertex graphs into itself (k is fixed). The process starts with a given n-vertex graph G(0). In each step, the graph G(i) is obtained by sampling k random vertices v_1,…,v_k of G(i−1) and replacing the induced graph F:=G(i−1)[v_1,…,v_k] by R(F). This class contains several previously studied processes including the Erdős-Rényi random graph process and the triangle removal process. Actually, our definition of flip processes is more general, in that R(F) is a probability distribution on H(k), thus allowing randomised replacements. Given a flip process with a rule R, we construct time-indexed trajectories Φ:W×[0,∞)→W in the space W of graphons. We prove that for any T>0 starting with a large finite graph G(0) which is close to a graphon U in the cut norm, with high probability the flip process will stay in a thin sausage around the trajectory Φ(U,t) for t∈[0,T] (after rescaling the time by the square of the order of the graph). These graphon trajectories are then studied from the perspective of dynamical systems. Among others topics, we study continuity properties of these trajectories with respect to time and initial graphon, existence and stability of fixed points and speed of convergence (whenever the infinite time limit exists). We give an example of a flip process with a periodic trajectory.
Název v anglickém jazyce
From flip processes to dynamical systems on graphons
Popis výsledku anglicky
We introduce a class of random graph processes, which we call flip processes. Each such process is given by a rule which is a function R:H(k)→H(k) from all labeled k-vertex graphs into itself (k is fixed). The process starts with a given n-vertex graph G(0). In each step, the graph G(i) is obtained by sampling k random vertices v_1,…,v_k of G(i−1) and replacing the induced graph F:=G(i−1)[v_1,…,v_k] by R(F). This class contains several previously studied processes including the Erdős-Rényi random graph process and the triangle removal process. Actually, our definition of flip processes is more general, in that R(F) is a probability distribution on H(k), thus allowing randomised replacements. Given a flip process with a rule R, we construct time-indexed trajectories Φ:W×[0,∞)→W in the space W of graphons. We prove that for any T>0 starting with a large finite graph G(0) which is close to a graphon U in the cut norm, with high probability the flip process will stay in a thin sausage around the trajectory Φ(U,t) for t∈[0,T] (after rescaling the time by the square of the order of the graph). These graphon trajectories are then studied from the perspective of dynamical systems. Among others topics, we study continuity properties of these trajectories with respect to time and initial graphon, existence and stability of fixed points and speed of convergence (whenever the infinite time limit exists). We give an example of a flip process with a periodic trajectory.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Annales de L Institut Henri Poincare-Probabilites Et Statistiques
ISSN
0246-0203
e-ISSN
—
Svazek periodika
60
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
45
Strana od-do
2878-2922
Kód UT WoS článku
001364407800018
EID výsledku v databázi Scopus
2-s2.0-85211340202