Memory reduction of rate-dependent Prandtl-Ishlinskii compensators in applications on high-precision motion systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00582938" target="_blank" >RIV/67985840:_____/24:00582938 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21110/24:00382040
Výsledek na webu
<a href="https://doi.org/10.1016/j.physb.2023.415595" target="_blank" >https://doi.org/10.1016/j.physb.2023.415595</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.physb.2023.415595" target="_blank" >10.1016/j.physb.2023.415595</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Memory reduction of rate-dependent Prandtl-Ishlinskii compensators in applications on high-precision motion systems
Popis výsledku v původním jazyce
Inverse compensation of rate-dependent Prandtl–Ishlinskii operators with finitely many thresholds can be carried out explicitly under some structural conditions. However, if the number of thresholds is very high, the formulas become complicated. A simple and elegant framework for the investigation of such problems encompasses a recently proposed extension of the class of rate-dependent Prandtl-Ishlinskii operators to the case of a whole continuum of play operators with time-dependent thresholds. Indeed, such a theory allows for reducing the number of necessary thresholds in the compensation procedure and estimating the errors of the memory-discrete compensation in terms of the distance between the thresholds and weights of the individual plays. Following these results, our goal in this work is the validation of these theoretical models via numerical simulations and experimental results. In particular, we show that high accuracy of the hysteresis compensation algorithm can be achieved even with a relatively small number of thresholds.
Název v anglickém jazyce
Memory reduction of rate-dependent Prandtl-Ishlinskii compensators in applications on high-precision motion systems
Popis výsledku anglicky
Inverse compensation of rate-dependent Prandtl–Ishlinskii operators with finitely many thresholds can be carried out explicitly under some structural conditions. However, if the number of thresholds is very high, the formulas become complicated. A simple and elegant framework for the investigation of such problems encompasses a recently proposed extension of the class of rate-dependent Prandtl-Ishlinskii operators to the case of a whole continuum of play operators with time-dependent thresholds. Indeed, such a theory allows for reducing the number of necessary thresholds in the compensation procedure and estimating the errors of the memory-discrete compensation in terms of the distance between the thresholds and weights of the individual plays. Following these results, our goal in this work is the validation of these theoretical models via numerical simulations and experimental results. In particular, we show that high accuracy of the hysteresis compensation algorithm can be achieved even with a relatively small number of thresholds.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physica B-Condensed Matter
ISSN
0921-4526
e-ISSN
1873-2135
Svazek periodika
677
Číslo periodika v rámci svazku
15 March
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
16
Strana od-do
415595
Kód UT WoS článku
001175889100001
EID výsledku v databázi Scopus
2-s2.0-85184059038