Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A new look at old theorems of Fejér and Hardy

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00582940" target="_blank" >RIV/67985840:_____/24:00582940 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/s00025-023-02114-y" target="_blank" >https://doi.org/10.1007/s00025-023-02114-y</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00025-023-02114-y" target="_blank" >10.1007/s00025-023-02114-y</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A new look at old theorems of Fejér and Hardy

  • Popis výsledku v původním jazyce

    The article studies the convergence of trigonometric Fourier series via a new Tauberian theorem for Cesàro summable series in abstract normed spaces. This theorem generalizes some known results of Hardy and Littlewood for number series. We find sufficient conditions for the convergence of trigonometric Fourier series in homogeneous Banach spaces over the circle. These conditions are expressed in terms of the Fourier coefficients and are weaker than Hardy’s condition. We give a description of all Banach function spaces given over the circle and endowed with a norm been equivalent to a norm in a homogeneous Banach space. We study interpolation properties of such spaces and give new examples of them. We extend the classical Fejér theorem on the uniform Cesàro summability of the Fourier series on sets by means of a refined version of Cantor’s theorem on the uniform continuity of a mapping between metric spaces. We also generalize the classical Hardy theorem on the uniform convergence of the Fourier series on sets.

  • Název v anglickém jazyce

    A new look at old theorems of Fejér and Hardy

  • Popis výsledku anglicky

    The article studies the convergence of trigonometric Fourier series via a new Tauberian theorem for Cesàro summable series in abstract normed spaces. This theorem generalizes some known results of Hardy and Littlewood for number series. We find sufficient conditions for the convergence of trigonometric Fourier series in homogeneous Banach spaces over the circle. These conditions are expressed in terms of the Fourier coefficients and are weaker than Hardy’s condition. We give a description of all Banach function spaces given over the circle and endowed with a norm been equivalent to a norm in a homogeneous Banach space. We study interpolation properties of such spaces and give new examples of them. We extend the classical Fejér theorem on the uniform Cesàro summability of the Fourier series on sets by means of a refined version of Cantor’s theorem on the uniform continuity of a mapping between metric spaces. We also generalize the classical Hardy theorem on the uniform convergence of the Fourier series on sets.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10101 - Pure mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Results in Mathematics

  • ISSN

    1422-6383

  • e-ISSN

    1420-9012

  • Svazek periodika

    79

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    DE - Spolková republika Německo

  • Počet stran výsledku

    14

  • Strana od-do

    88

  • Kód UT WoS článku

    001162454900001

  • EID výsledku v databázi Scopus

    2-s2.0-85184190902