A three-grid high-order immersed finite element method for the analysis of CAD models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00586659" target="_blank" >RIV/67985840:_____/24:00586659 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.cad.2024.103730" target="_blank" >https://doi.org/10.1016/j.cad.2024.103730</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cad.2024.103730" target="_blank" >10.1016/j.cad.2024.103730</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A three-grid high-order immersed finite element method for the analysis of CAD models
Popis výsledku v původním jazyce
The automated finite element analysis of complex CAD models using boundary-fitted meshes is rife with difficulties. Immersed finite element methods are intrinsically more robust but usually less accurate. In this work, we introduce an efficient, robust, high-order immersed finite element method for complex CAD models. Our approach relies on three adaptive structured grids: a geometry grid for representing the implicit geometry, a finite element grid for discretising physical fields and a quadrature grid for evaluating the finite element integrals. The geometry grid is a sparse VDB (Volumetric Dynamic B+ tree) grid that is highly refined close to physical domain boundaries. The finite element grid consists of a forest of octree grids distributed over several processors, and the quadrature grid in each finite element cell is an octree grid constructed in a bottom-up fashion. The resolution of the quadrature grid ensures that finite element integrals are evaluated with sufficient accuracy and that any sub-grid geometric features, like small holes or corners, are resolved up to a desired resolution. The conceptual simplicity and modularity of our approach make it possible to reuse open-source libraries, i.e. openVDB and p4est for implementing the geometry and finite element grids, respectively, and BDDCML for iteratively solving the discrete systems of equations in parallel using domain decomposition. We demonstrate the efficiency and robustness of the proposed approach by solving the Poisson equation on domains described by complex CAD models and discretised with tens of millions of degrees of freedom. The solution field is discretised using linear and quadratic Lagrange basis functions.
Název v anglickém jazyce
A three-grid high-order immersed finite element method for the analysis of CAD models
Popis výsledku anglicky
The automated finite element analysis of complex CAD models using boundary-fitted meshes is rife with difficulties. Immersed finite element methods are intrinsically more robust but usually less accurate. In this work, we introduce an efficient, robust, high-order immersed finite element method for complex CAD models. Our approach relies on three adaptive structured grids: a geometry grid for representing the implicit geometry, a finite element grid for discretising physical fields and a quadrature grid for evaluating the finite element integrals. The geometry grid is a sparse VDB (Volumetric Dynamic B+ tree) grid that is highly refined close to physical domain boundaries. The finite element grid consists of a forest of octree grids distributed over several processors, and the quadrature grid in each finite element cell is an octree grid constructed in a bottom-up fashion. The resolution of the quadrature grid ensures that finite element integrals are evaluated with sufficient accuracy and that any sub-grid geometric features, like small holes or corners, are resolved up to a desired resolution. The conceptual simplicity and modularity of our approach make it possible to reuse open-source libraries, i.e. openVDB and p4est for implementing the geometry and finite element grids, respectively, and BDDCML for iteratively solving the discrete systems of equations in parallel using domain decomposition. We demonstrate the efficiency and robustness of the proposed approach by solving the Poisson equation on domains described by complex CAD models and discretised with tens of millions of degrees of freedom. The solution field is discretised using linear and quadratic Lagrange basis functions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA23-06159S" target="_blank" >GA23-06159S: Vírové struktury: pokročilé metody identifikace a efektivní numerické simulace</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computer-Aided Design
ISSN
0010-4485
e-ISSN
1879-2685
Svazek periodika
173
Číslo periodika v rámci svazku
August
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
17
Strana od-do
103730
Kód UT WoS článku
001248243600002
EID výsledku v databázi Scopus
2-s2.0-85194555724