Fractional strain tensor and fractional elasticity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985840%3A_____%2F24%3A00588499" target="_blank" >RIV/67985840:_____/24:00588499 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s10659-022-09970-9" target="_blank" >https://doi.org/10.1007/s10659-022-09970-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10659-022-09970-9" target="_blank" >10.1007/s10659-022-09970-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fractional strain tensor and fractional elasticity
Popis výsledku v původním jazyce
A new fractional strain tensor ϵα(u) of order α (0<α<1) is introduced for a displacement u of a body occupying the entire three-dimensional space. For α↑1, the fractional strain tensor approaches the classical infinitesimal strain tensor of the linear elasticity. It is shown that ϵα(u) satisfies Korn’s inequality (in a general Lp version, 1<p<∞) and the fractional analog of Saint-Venant’s compatibility condition. The strain ϵα(u) is then used to formulate a three-dimensional fractional linear elasticity theory. The equilibrium of the body in an external force f is determined by the Euler-Lagrange equation of the total energy functional. The solution u is given by Green’s function Gα: (Formula presented.) For an isotropic body the equilibrium equation reads (Formula presented.) where λ, μ are the Lamé moduli of the material and (−Δ)α, ∇α and divα are the fractional laplacean, gradient and divergence. Green’s function can be determined explicitly in this case: (Formula presented.) x∈R3, x≠0, where I is the identity tensor (matrix), and cα a normalization factor (determined below). For α↑1 the function Gα approaches Green’s function of the standard linear elasticity. Similar approach applies to the equilibrium solution.
Název v anglickém jazyce
Fractional strain tensor and fractional elasticity
Popis výsledku anglicky
A new fractional strain tensor ϵα(u) of order α (0<α<1) is introduced for a displacement u of a body occupying the entire three-dimensional space. For α↑1, the fractional strain tensor approaches the classical infinitesimal strain tensor of the linear elasticity. It is shown that ϵα(u) satisfies Korn’s inequality (in a general Lp version, 1<p<∞) and the fractional analog of Saint-Venant’s compatibility condition. The strain ϵα(u) is then used to formulate a three-dimensional fractional linear elasticity theory. The equilibrium of the body in an external force f is determined by the Euler-Lagrange equation of the total energy functional. The solution u is given by Green’s function Gα: (Formula presented.) For an isotropic body the equilibrium equation reads (Formula presented.) where λ, μ are the Lamé moduli of the material and (−Δ)α, ∇α and divα are the fractional laplacean, gradient and divergence. Green’s function can be determined explicitly in this case: (Formula presented.) x∈R3, x≠0, where I is the identity tensor (matrix), and cα a normalization factor (determined below). For α↑1 the function Gα approaches Green’s function of the standard linear elasticity. Similar approach applies to the equilibrium solution.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Elasticity
ISSN
0374-3535
e-ISSN
1573-2681
Svazek periodika
155
Číslo periodika v rámci svazku
1-5
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
23
Strana od-do
425-447
Kód UT WoS článku
000901954200002
EID výsledku v databázi Scopus
2-s2.0-85144458920