Adsorpce vody na povrchy TiO2 a SnO2: Molekulárně dynamická studie
Popis výsledku
Struktura a termodynamika vody adsorbované na (110) povrchu rutilu a kasiteritu byly studovány prostřednictvím molekulárně dynamických simulací. Aby bylo možné studovat disociaci povrchové vody, byly uvažovány dva krajní případy zcela hydroxylovaných a nehydroxylovaných povrchů. Hustotní distribuce a Helmholtzova volná energie pro různé typy povrchů byly srovnány s výsledky termální gravimetrické analýzy z literatury. Zjistili jsme, že disociace vody v první vrstvě podstatně mění afinitu další adsorbované vody k povrchu: oslabuje vodíkové vazby mezi první a druhou vrstvou a zvyšuje kohezi mezi druhou a třetí vrstvou. Srovnání s experimenty ukazuje, že voda na kasiteritu disociuje, zatímco na rutilu zůstává asociovaná. Stupeň disociace v první vrstvě není silně ovlivněn adsorpcí další vody.
Klíčová slova
Identifikátory výsledku
Kód výsledku v IS VaVaI
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Adsorption of Water on TiO2 and SnO2 Surfaces: Molecular Dynamics Study
Popis výsledku v původním jazyce
The structure and thermodynamics of water adsorbed at the surface of rutile and cassiterite were studied by means of molecular dynamics simulations. To investigate the effect of surface water dissociation on the adsorption, two extreme cases of completely hydroxylated and nonhydroxylated surfaces were considered. Density distributions and adsorption Helmholtz free energies of water for different types of surfaces were compared and related to thermal gravimetric analysis data from literature. We found that the dissociation of water in the first layer considerably changes the affinity of additional water to the surface, weakening hydrogen bonding between the first and second layer and strengthening cohesion between the second and third layer. Comparisonwith experiments indicates that water dissociates on cassiterite while it stays associated on rutile. The degree of dissociation in the first layer is not strongly affected by the adsorption of additional water.
Název v anglickém jazyce
Adsorption of Water on TiO2 and SnO2 Surfaces: Molecular Dynamics Study
Popis výsledku anglicky
The structure and thermodynamics of water adsorbed at the surface of rutile and cassiterite were studied by means of molecular dynamics simulations. To investigate the effect of surface water dissociation on the adsorption, two extreme cases of completely hydroxylated and nonhydroxylated surfaces were considered. Density distributions and adsorption Helmholtz free energies of water for different types of surfaces were compared and related to thermal gravimetric analysis data from literature. We found that the dissociation of water in the first layer considerably changes the affinity of additional water to the surface, weakening hydrogen bonding between the first and second layer and strengthening cohesion between the second and third layer. Comparisonwith experiments indicates that water dissociates on cassiterite while it stays associated on rutile. The degree of dissociation in the first layer is not strongly affected by the adsorption of additional water.
Klasifikace
Druh
Jx - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
CF - Fyzikální chemie a teoretická chemie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2008
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Collection of Czechoslovak Chemical Communications
ISSN
0010-0765
e-ISSN
—
Svazek periodika
73
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
15
Strana od-do
—
Kód UT WoS článku
256753400009
EID výsledku v databázi Scopus
—
Základní informace
Druh výsledku
Jx - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP
CF - Fyzikální chemie a teoretická chemie
Rok uplatnění
2008