A General Hydrogen Bonding Definition Based on Three-dimensional Spatial Distribution Functions and Its Extension to Quantitative Structural Analysis of Solutions and General Intermolecular Bonds.
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F19%3A00501958" target="_blank" >RIV/67985858:_____/19:00501958 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/44555601:13440/19:43894623
Výsledek na webu
<a href="http://hdl.handle.net/11104/0294044" target="_blank" >http://hdl.handle.net/11104/0294044</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.molliq.2019.02.036" target="_blank" >10.1016/j.molliq.2019.02.036</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A General Hydrogen Bonding Definition Based on Three-dimensional Spatial Distribution Functions and Its Extension to Quantitative Structural Analysis of Solutions and General Intermolecular Bonds.
Popis výsledku v původním jazyce
Numerous microscopic definitions of hydrogen bonding have been proposed and employed in molecular simulations. They are typically based on various energetic, topological, and geometric criteria and require a specification of the cut-off values. The cut-off values are chosen to yield a reasonable description of hydrogen bonding in a particular molecular system under particular conditions and for a particular molecular model, and they are not thus straightforwardly transferable to different molecular systems or conditions. We propose a general approach to define and quantify the intermolecular bonds in liquids and solutions, including hydrogen bonds, which is free of any cutoff values. The approach is based on finding a continuous bond region in the surroundings of a local maximum of a spatial distribution function, enclosed by an isosurface going through the nearest significant saddle point. Moreover, the general definition of intermolecular bonding can quantify significance of particular intermolecular bonds or can be used locally to quantify and characterise bonds in heterogeneous systems or confinement. Besides the general definition of the intermolecular bonding, the bond region can be further characterised by a number of relevant properties such as the number of bonds per molecule, volume of a bond region per molecule, bond stability/strength or hydration number to provide deep insight into the intermolecular bonding. The approach is demonstrated for pure water and aqueous NaCl solutions under different thermodynamic conditions, and our results on the behaviour and quantification of their intermolecular bonding are compared with results obtained usingncommonly-used bond definitions.
Název v anglickém jazyce
A General Hydrogen Bonding Definition Based on Three-dimensional Spatial Distribution Functions and Its Extension to Quantitative Structural Analysis of Solutions and General Intermolecular Bonds.
Popis výsledku anglicky
Numerous microscopic definitions of hydrogen bonding have been proposed and employed in molecular simulations. They are typically based on various energetic, topological, and geometric criteria and require a specification of the cut-off values. The cut-off values are chosen to yield a reasonable description of hydrogen bonding in a particular molecular system under particular conditions and for a particular molecular model, and they are not thus straightforwardly transferable to different molecular systems or conditions. We propose a general approach to define and quantify the intermolecular bonds in liquids and solutions, including hydrogen bonds, which is free of any cutoff values. The approach is based on finding a continuous bond region in the surroundings of a local maximum of a spatial distribution function, enclosed by an isosurface going through the nearest significant saddle point. Moreover, the general definition of intermolecular bonding can quantify significance of particular intermolecular bonds or can be used locally to quantify and characterise bonds in heterogeneous systems or confinement. Besides the general definition of the intermolecular bonding, the bond region can be further characterised by a number of relevant properties such as the number of bonds per molecule, volume of a bond region per molecule, bond stability/strength or hydration number to provide deep insight into the intermolecular bonding. The approach is demonstrated for pure water and aqueous NaCl solutions under different thermodynamic conditions, and our results on the behaviour and quantification of their intermolecular bonding are compared with results obtained usingncommonly-used bond definitions.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-25100S" target="_blank" >GA17-25100S: Geometricky a chemicky strukturované povrchy: od rovnováhy k dynamice</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Molecular Liquids
ISSN
0167-7322
e-ISSN
—
Svazek periodika
281
Číslo periodika v rámci svazku
MAY 1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
225-235
Kód UT WoS článku
000465049400025
EID výsledku v databázi Scopus
2-s2.0-85062032017