Compaction front and pore fluid pressurization in horizontally shaken drained granular layers.
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F20%3A00524193" target="_blank" >RIV/67985858:_____/20:00524193 - isvavai.cz</a>
Výsledek na webu
<a href="http://hdl.handle.net/11104/0308904" target="_blank" >http://hdl.handle.net/11104/0308904</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevFluids.5.054301" target="_blank" >10.1103/PhysRevFluids.5.054301</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Compaction front and pore fluid pressurization in horizontally shaken drained granular layers.
Popis výsledku v původním jazyce
In many natural granular systems, the interstitial pores are filled with a fluid. Deformation of this two-phase system is complex, is highly coupled, and depends on the initialnand boundary conditions. Here we study granular compaction and fluid flow in a saturated, horizontally shaken, unconfined granular layer, where the fluid is free to flow in and out of the layer through the free upper surface during shaking (i.e., drained boundary condition). The geometry, boundary conditions, and parameters are chosen to resemble a shallow soil layer, subjected to horizontal cyclic acceleration simulating that of an earthquake. We develop a theory and conduct coupled discrete element and fluid numerical simulations. Theoretical and simulation results show that under drained conditions and above a critical acceleration, the grain layer compacts at a rate governed by the fluid flow parameters of permeability and viscosity and is independent of the shaking parameters of frequency and acceleration. A compaction front develops, swiping upward through the system. Above the front, compaction occurs and the fluid becomes pressurized. Pressure gradients drive fluid seepage upward and out of the compacting layer while supporting the granular skeleton. The rate of compaction and the interstitial fluid pressure gradient coevolve until fluid seepage forces balance solid contact forces and grain contacts disappear. As an outcome, the imposed shear waves are not transmitted and the region is liquefied. Below the compaction front (i.e., after its passage), the grains are well compacted, and shaking is transmitted upward. We conclude that the drained condition for the interstitial pore fluid is a critical ingredient for the formation of an upward-moving compaction front, which separates a granular region that exhibits a liquidlike rheology from a solidlike region.
Název v anglickém jazyce
Compaction front and pore fluid pressurization in horizontally shaken drained granular layers.
Popis výsledku anglicky
In many natural granular systems, the interstitial pores are filled with a fluid. Deformation of this two-phase system is complex, is highly coupled, and depends on the initialnand boundary conditions. Here we study granular compaction and fluid flow in a saturated, horizontally shaken, unconfined granular layer, where the fluid is free to flow in and out of the layer through the free upper surface during shaking (i.e., drained boundary condition). The geometry, boundary conditions, and parameters are chosen to resemble a shallow soil layer, subjected to horizontal cyclic acceleration simulating that of an earthquake. We develop a theory and conduct coupled discrete element and fluid numerical simulations. Theoretical and simulation results show that under drained conditions and above a critical acceleration, the grain layer compacts at a rate governed by the fluid flow parameters of permeability and viscosity and is independent of the shaking parameters of frequency and acceleration. A compaction front develops, swiping upward through the system. Above the front, compaction occurs and the fluid becomes pressurized. Pressure gradients drive fluid seepage upward and out of the compacting layer while supporting the granular skeleton. The rate of compaction and the interstitial fluid pressure gradient coevolve until fluid seepage forces balance solid contact forces and grain contacts disappear. As an outcome, the imposed shear waves are not transmitted and the region is liquefied. Below the compaction front (i.e., after its passage), the grains are well compacted, and shaking is transmitted upward. We conclude that the drained condition for the interstitial pore fluid is a critical ingredient for the formation of an upward-moving compaction front, which separates a granular region that exhibits a liquidlike rheology from a solidlike region.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10505 - Geology
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ19-21114Y" target="_blank" >GJ19-21114Y: Mechanická teorie dynamicky aktivovaných zemětřesení</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review Fluids
ISSN
2469-990X
e-ISSN
—
Svazek periodika
5
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
25
Strana od-do
054301
Kód UT WoS článku
000530033200003
EID výsledku v databázi Scopus
2-s2.0-85087865420