Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Pore Pressure Drop During Dynamic Rupture and Conditions for Dilatancy Hardening

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F23%3A00573882" target="_blank" >RIV/67985858:_____/23:00573882 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/44555601:13440/23:43897742

  • Výsledek na webu

    <a href="https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2023JB026396?src=getftr" target="_blank" >https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2023JB026396?src=getftr</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1029/2023JB026396" target="_blank" >10.1029/2023JB026396</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Pore Pressure Drop During Dynamic Rupture and Conditions for Dilatancy Hardening

  • Popis výsledku v původním jazyce

    Pore pressure drop brought about by fault dilatancy during accelerating slip may suppress nucleation of earthquakes. Yet, direct measurements of pore pressure during dynamic slip are challenging to produce. We present results of a physics-based model simulating onset of slip in saturated granular layers coupled to a constant fluid pressure reservoir. Grain rearrangements required for slip to commence induce incipient rapid dilatation during which the maximum pore pressure drop is generated. We find that up to a critical slip rate the pore pressure drop is consistent with a prediction derived for an incompressible fluid flow. In this drained regime, excess pore pressure is efficiently relaxed and has little effect on slip stability. Above the critical slip rate, marking the onset of undrained conditions, the pore pressure drop decays slowly, inhibits dilatation rate, and significantly increases strength of the layer, stabilizing the rupture growth. The magnitude of the pore pressure drop increases monotonically with the drainage number given as the ratio of the dilatation rate to a characteristic fluid infiltration rate. The pore pressure drop in the undrained regime also depends on a second non-dimensional parameter, urn:x-wiley:21699313:media:jgrb56355:jgrb56355-math-0001, where β is storage capacity, and urn:x-wiley:21699313:media:jgrb56355:jgrb56355-math-0002 is the effective normal stress. Low values of this parameter enhance localization of strain near the drained boundaries of the layer, promoting fluid flow into the layer. Our results can be used to better constrain drainage conditions associated with changes in slip rate, the magnitude of the generated pore pressure and the corresponding fault strengthening.

  • Název v anglickém jazyce

    Pore Pressure Drop During Dynamic Rupture and Conditions for Dilatancy Hardening

  • Popis výsledku anglicky

    Pore pressure drop brought about by fault dilatancy during accelerating slip may suppress nucleation of earthquakes. Yet, direct measurements of pore pressure during dynamic slip are challenging to produce. We present results of a physics-based model simulating onset of slip in saturated granular layers coupled to a constant fluid pressure reservoir. Grain rearrangements required for slip to commence induce incipient rapid dilatation during which the maximum pore pressure drop is generated. We find that up to a critical slip rate the pore pressure drop is consistent with a prediction derived for an incompressible fluid flow. In this drained regime, excess pore pressure is efficiently relaxed and has little effect on slip stability. Above the critical slip rate, marking the onset of undrained conditions, the pore pressure drop decays slowly, inhibits dilatation rate, and significantly increases strength of the layer, stabilizing the rupture growth. The magnitude of the pore pressure drop increases monotonically with the drainage number given as the ratio of the dilatation rate to a characteristic fluid infiltration rate. The pore pressure drop in the undrained regime also depends on a second non-dimensional parameter, urn:x-wiley:21699313:media:jgrb56355:jgrb56355-math-0001, where β is storage capacity, and urn:x-wiley:21699313:media:jgrb56355:jgrb56355-math-0002 is the effective normal stress. Low values of this parameter enhance localization of strain near the drained boundaries of the layer, promoting fluid flow into the layer. Our results can be used to better constrain drainage conditions associated with changes in slip rate, the magnitude of the generated pore pressure and the corresponding fault strengthening.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10505 - Geology

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GJ19-21114Y" target="_blank" >GJ19-21114Y: Mechanická teorie dynamicky aktivovaných zemětřesení</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Geophysical Research-Solid Earth

  • ISSN

    2169-9313

  • e-ISSN

    2169-9356

  • Svazek periodika

    128

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    30

  • Strana od-do

    e2023JB026396

  • Kód UT WoS článku

    001042049100001

  • EID výsledku v databázi Scopus

    2-s2.0-85164031833