Capillary condensation and depinning transitions in open slits.
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F21%3A00547277" target="_blank" >RIV/67985858:_____/21:00547277 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22340/21:43922323
Výsledek na webu
<a href="http://hdl.handle.net/11104/0323552" target="_blank" >http://hdl.handle.net/11104/0323552</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevE.104.044801" target="_blank" >10.1103/PhysRevE.104.044801</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Capillary condensation and depinning transitions in open slits.
Popis výsledku v původním jazyce
We study the low-temperature phase equilibria of a fluid confined in an open capillary slit formed by twoparallel walls separated by a distance L which are in contact with a reservoir of gas. The top wall of the capillary is of finite length H while the bottom wall is considered of macroscopic extent. This system shows rich phase equilibria arising from the competition between two different types of capillary condensation, corner filling, and meniscus depinning transitions depending on the value of the aspect ratio a = L/H and divides into threenregimes: For long capillaries, with a < 2/π, the condensation is of type I involving menisci which are pinned at the top edges at the ends of the capillary. For intermediate capillaries, with 2/π < a < 1, depending on the value of the contact angle the condensation may be of type I or of type II, in which the menisci overspill into the reservoir and there is no pinning. For short capillaries, with a > 1, condensation is always of type II. In all regimes, capillary condensation is completely suppressed for sufficiently large contact angles which is determined explicitly. For long and intermediate capillaries, we show that there is an additional continuous phase transition in the condensed liquid-like phase, associated with the depinning of each meniscus as they round the upper open edges of the slit. Meniscus depinning is third-order for complete wetting and second-order for partial wetting. Detailed scaling theories are developed for these transitions and phase boundaries which connect with the theories of wedge (corner) filling and wetting encompassing interfacial fluctuation effects and the directninfluence of intermolecular forces.We test several of our predictions using a fully microscopic density functional theory which allows us to study the two types of capillary condensation and its suppression at the molecular level for different aspect ratios and contact angles.
Název v anglickém jazyce
Capillary condensation and depinning transitions in open slits.
Popis výsledku anglicky
We study the low-temperature phase equilibria of a fluid confined in an open capillary slit formed by twoparallel walls separated by a distance L which are in contact with a reservoir of gas. The top wall of the capillary is of finite length H while the bottom wall is considered of macroscopic extent. This system shows rich phase equilibria arising from the competition between two different types of capillary condensation, corner filling, and meniscus depinning transitions depending on the value of the aspect ratio a = L/H and divides into threenregimes: For long capillaries, with a < 2/π, the condensation is of type I involving menisci which are pinned at the top edges at the ends of the capillary. For intermediate capillaries, with 2/π < a < 1, depending on the value of the contact angle the condensation may be of type I or of type II, in which the menisci overspill into the reservoir and there is no pinning. For short capillaries, with a > 1, condensation is always of type II. In all regimes, capillary condensation is completely suppressed for sufficiently large contact angles which is determined explicitly. For long and intermediate capillaries, we show that there is an additional continuous phase transition in the condensed liquid-like phase, associated with the depinning of each meniscus as they round the upper open edges of the slit. Meniscus depinning is third-order for complete wetting and second-order for partial wetting. Detailed scaling theories are developed for these transitions and phase boundaries which connect with the theories of wedge (corner) filling and wetting encompassing interfacial fluctuation effects and the directninfluence of intermolecular forces.We test several of our predictions using a fully microscopic density functional theory which allows us to study the two types of capillary condensation and its suppression at the molecular level for different aspect ratios and contact angles.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-14547S" target="_blank" >GA20-14547S: Povrchové a kritické jevy v nano-strukturovaném prostředí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review E
ISSN
2470-0045
e-ISSN
2470-0053
Svazek periodika
104
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
044801
Kód UT WoS článku
000708537800007
EID výsledku v databázi Scopus
2-s2.0-85117710249