Edge Contact Angle, Capillary Condensation, and Meniscus Depinning.
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F21%3A00545672" target="_blank" >RIV/67985858:_____/21:00545672 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22340/21:43922336
Výsledek na webu
<a href="http://hdl.handle.net/11104/0322350" target="_blank" >http://hdl.handle.net/11104/0322350</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevLett.127.115703" target="_blank" >10.1103/PhysRevLett.127.115703</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Edge Contact Angle, Capillary Condensation, and Meniscus Depinning.
Popis výsledku v původním jazyce
We study the phase equilibria of a fluid confined in an open capillary slit formed when a wall of finite length H is brought a distance L away from a second macroscopic surface. This system shows rich phase equilibria arising from the competition between two different types of capillary condensation, corner filling and meniscus depinning transitions depending on the value of the aspect ratio a=L/H. For long capillaries, with a<2/π, the condensation is of type I involving menisci which are pinned at the top edges at the ends of the capillary characterized by an edge contact angle. For intermediate capillaries, with 2/π1, condensation is always of type II. In all regimes, capillary condensation is completely suppressed for sufficiently large contact angles. We show that there is an additional continuous phase transition in the condensed liquidlike phase, associated with the depinning of each meniscus as they round the upper open edges of the slit. Finite-size scaling predictions are developed for these transitions and phase boundaries which connect with the fluctuation theories of wetting and filling transitions. We test several of our predictions using a fully microscopic density functional theory which allows us to study the two types of capillary condensation and its suppression at the molecular level.
Název v anglickém jazyce
Edge Contact Angle, Capillary Condensation, and Meniscus Depinning.
Popis výsledku anglicky
We study the phase equilibria of a fluid confined in an open capillary slit formed when a wall of finite length H is brought a distance L away from a second macroscopic surface. This system shows rich phase equilibria arising from the competition between two different types of capillary condensation, corner filling and meniscus depinning transitions depending on the value of the aspect ratio a=L/H. For long capillaries, with a<2/π, the condensation is of type I involving menisci which are pinned at the top edges at the ends of the capillary characterized by an edge contact angle. For intermediate capillaries, with 2/π1, condensation is always of type II. In all regimes, capillary condensation is completely suppressed for sufficiently large contact angles. We show that there is an additional continuous phase transition in the condensed liquidlike phase, associated with the depinning of each meniscus as they round the upper open edges of the slit. Finite-size scaling predictions are developed for these transitions and phase boundaries which connect with the fluctuation theories of wetting and filling transitions. We test several of our predictions using a fully microscopic density functional theory which allows us to study the two types of capillary condensation and its suppression at the molecular level.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10301 - Atomic, molecular and chemical physics (physics of atoms and molecules including collision, interaction with radiation, magnetic resonances, Mössbauer effect)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-14547S" target="_blank" >GA20-14547S: Povrchové a kritické jevy v nano-strukturovaném prostředí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review Letters
ISSN
0031-9007
e-ISSN
1079-7114
Svazek periodika
127
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
5
Strana od-do
115703
Kód UT WoS článku
000694048000003
EID výsledku v databázi Scopus
2-s2.0-85114873218