Continuous Condensation in Nanogrooves.
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F18%3A00497922" target="_blank" >RIV/67985858:_____/18:00497922 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1103/PhysRevE.97.052804" target="_blank" >http://dx.doi.org/10.1103/PhysRevE.97.052804</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevE.97.052804" target="_blank" >10.1103/PhysRevE.97.052804</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Continuous Condensation in Nanogrooves.
Popis výsledku v původním jazyce
We consider condensation in a capillary groove of width L and depth D, formed by walls that are completely wet (contact angle theta=0), which is in a contact with a gas reservoir of the chemical potential mu. On a mesoscopic level, the condensation process can be described in terms of the midpoint height l of a meniscus formed at the liquid-gas interface. For macroscopically deep grooves (D -> 8), and in the presence of long-range (dispersion) forces, the condensation corresponds to a second-order phase transition, such that l similar to (mu(cc)-mu)(-1/4) as mu ->mu(-)(cc) where mu(cc) is the chemical potential pertinent to capillary condensation in a slit pore of width L. For finite values of D, the transition becomes rounded and the groove becomes filled with liquid at a chemical potential higher than mu(cc) with a difference of the order of D-3. For sufficiently deep grooves, the meniscus growth initially follows the power law l similar to (mu(cc-mu)cc)(-1/4) , but this behavior eventually crosses over to l similar to D-(mu-mu(cc))-1/3 above mu cc, with a gap between the two regimes shown to be (delta) over bar mu similar to D-3. Right at mu=mu(cc), when the groove is only partially filled with liquid, the height of the meniscus scales as l* similar to ((DL)-L-3)(1/4). Moreover, the chemical potential (or pressure) at which the groove is half-filled with liquid exhibits a nonmonotonic dependence on D with a maximum at D approximate to 3L/2 and coincides with mu(cc) when L approximate to D. Finally, we show that condensation in finite grooves can be mapped on the condensation in capillary slits formed by two asymmetric (competing) walls a distance D apart with potential strengths depending on L. All these predictions, based on mesoscopic arguments, are confirmed by fully microscopic Rosenfeld's density functional theory with a reasonable agreement down to surprisingly small values of both L and D.
Název v anglickém jazyce
Continuous Condensation in Nanogrooves.
Popis výsledku anglicky
We consider condensation in a capillary groove of width L and depth D, formed by walls that are completely wet (contact angle theta=0), which is in a contact with a gas reservoir of the chemical potential mu. On a mesoscopic level, the condensation process can be described in terms of the midpoint height l of a meniscus formed at the liquid-gas interface. For macroscopically deep grooves (D -> 8), and in the presence of long-range (dispersion) forces, the condensation corresponds to a second-order phase transition, such that l similar to (mu(cc)-mu)(-1/4) as mu ->mu(-)(cc) where mu(cc) is the chemical potential pertinent to capillary condensation in a slit pore of width L. For finite values of D, the transition becomes rounded and the groove becomes filled with liquid at a chemical potential higher than mu(cc) with a difference of the order of D-3. For sufficiently deep grooves, the meniscus growth initially follows the power law l similar to (mu(cc-mu)cc)(-1/4) , but this behavior eventually crosses over to l similar to D-(mu-mu(cc))-1/3 above mu cc, with a gap between the two regimes shown to be (delta) over bar mu similar to D-3. Right at mu=mu(cc), when the groove is only partially filled with liquid, the height of the meniscus scales as l* similar to ((DL)-L-3)(1/4). Moreover, the chemical potential (or pressure) at which the groove is half-filled with liquid exhibits a nonmonotonic dependence on D with a maximum at D approximate to 3L/2 and coincides with mu(cc) when L approximate to D. Finally, we show that condensation in finite grooves can be mapped on the condensation in capillary slits formed by two asymmetric (competing) walls a distance D apart with potential strengths depending on L. All these predictions, based on mesoscopic arguments, are confirmed by fully microscopic Rosenfeld's density functional theory with a reasonable agreement down to surprisingly small values of both L and D.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10403 - Physical chemistry
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-25100S" target="_blank" >GA17-25100S: Geometricky a chemicky strukturované povrchy: od rovnováhy k dynamice</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review E
ISSN
2470-0045
e-ISSN
—
Svazek periodika
97
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
—
Kód UT WoS článku
000433068100006
EID výsledku v databázi Scopus
2-s2.0-85047778626