Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Atomistic simulation framework for molten salt vapor–liquid equilibrium prediction and its application to NaCl

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F22%3A00562496" target="_blank" >RIV/67985858:_____/22:00562496 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://hdl.handle.net/11104/0334823" target="_blank" >https://hdl.handle.net/11104/0334823</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/5.0089455" target="_blank" >10.1063/5.0089455</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Atomistic simulation framework for molten salt vapor–liquid equilibrium prediction and its application to NaCl

  • Popis výsledku v původním jazyce

    Knowledge of the vapor–liquid equilibrium (VLE) properties of molten salts is important in the design of thermal energy storage systems for solar power and nuclear energy production applications. The high temperatures involved make their experimental determination problematic, and the development of both macroscopic thermodynamic correlations and predictive molecular-based methodologies are complicated by the requirement to appropriately incorporate the chemically reacting vapor-phase species. We derive a general thermodynamic-based atomistic simulation framework for molten salt VLE prediction and show its application to NaCl. Its input quantities are temperature-dependent ideal-gas free energy data for the vapor phase reactions and density and residual chemical potential data for the liquid. If these are not available experimentally, the former may be predicted using standard electronic structure software, and the latter may be predicted by means of classical atomistic simulation methodology. The framework predicts the temperature dependence of vapor pressure, coexisting phase densities, vapor phase composition, and vaporization enthalpy. It also predicts the concentrations of vapor phase species present in minor amounts (such as the free ions), quantities that are extremely difficult to measure experimentally. We furthermore use the results to obtain an approximation to the complete VLE binodal dome and the critical properties. We verify the framework for molten NaCl, for which experimentally based density and chemical potential data are available in the literature. We then apply it to the analysis of NaCl simulation data for two commonly used atomistic force fields. The framework can be readily extended to molten salt mixtures and to ionic liquids.

  • Název v anglickém jazyce

    Atomistic simulation framework for molten salt vapor–liquid equilibrium prediction and its application to NaCl

  • Popis výsledku anglicky

    Knowledge of the vapor–liquid equilibrium (VLE) properties of molten salts is important in the design of thermal energy storage systems for solar power and nuclear energy production applications. The high temperatures involved make their experimental determination problematic, and the development of both macroscopic thermodynamic correlations and predictive molecular-based methodologies are complicated by the requirement to appropriately incorporate the chemically reacting vapor-phase species. We derive a general thermodynamic-based atomistic simulation framework for molten salt VLE prediction and show its application to NaCl. Its input quantities are temperature-dependent ideal-gas free energy data for the vapor phase reactions and density and residual chemical potential data for the liquid. If these are not available experimentally, the former may be predicted using standard electronic structure software, and the latter may be predicted by means of classical atomistic simulation methodology. The framework predicts the temperature dependence of vapor pressure, coexisting phase densities, vapor phase composition, and vaporization enthalpy. It also predicts the concentrations of vapor phase species present in minor amounts (such as the free ions), quantities that are extremely difficult to measure experimentally. We furthermore use the results to obtain an approximation to the complete VLE binodal dome and the critical properties. We verify the framework for molten NaCl, for which experimentally based density and chemical potential data are available in the literature. We then apply it to the analysis of NaCl simulation data for two commonly used atomistic force fields. The framework can be readily extended to molten salt mixtures and to ionic liquids.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10403 - Physical chemistry

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Chemical Physics

  • ISSN

    0021-9606

  • e-ISSN

    1089-7690

  • Svazek periodika

    156

  • Číslo periodika v rámci svazku

    14

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    12

  • Strana od-do

    144501

  • Kód UT WoS článku

    000874325800001

  • EID výsledku v databázi Scopus

    2-s2.0-85128487297