New particle formation event detection with convolutional neural networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985858%3A_____%2F24%3A00586964" target="_blank" >RIV/67985858:_____/24:00586964 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1352231024001626?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1352231024001626?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.atmosenv.2024.120487" target="_blank" >10.1016/j.atmosenv.2024.120487</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
New particle formation event detection with convolutional neural networks
Popis výsledku v původním jazyce
New aerosol particle formation (NPF) events play a significant role in altering aerosol concentrations and dispersion within the atmosphere, making them vital for both climate and air quality research. The primary objective of investigating NPF events is to precisely determine their occurrence dates. In this study, we introduced the ConvNeXt model for the first time to identify NPF events, and compared its performance with two other deep learning models, EfficientNet and Swin Transformer. Our main aim was to automate an objective identification and classification of NPF events accurately. All three models employed transfer learning to effectively capture critical features associated with NPF. Our results demonstrated that the ConvNeXt model significantly outperformed the other models, achieving an impressive accuracy rate of 95.3% on event days, surpassing EfficientNet (92.8%) and Swin Transformer (94.9%). Furthermore, we performed tests using different ConvNeXt variants (ConvNeXt-T/S/B/L/XL) and different pre-training weights, revealing that different configurations of ConvNeXt models exhibited improved NPF event recognition capabilities. Finally, we conducted generalizability experiments using the ConvNeXt-XL model, achieving the highest accuracy of 96.4% on event days. This study not only underscores the recognition prowess of ConvNeXt models but also highlights their practical utility in accurately detecting NPF events in real-world scenarios. This contribution aids in advancing Atmospheric our comprehension of aerosol dynamics in atmospheric environments, providing valuable insights for climate and air quality research.
Název v anglickém jazyce
New particle formation event detection with convolutional neural networks
Popis výsledku anglicky
New aerosol particle formation (NPF) events play a significant role in altering aerosol concentrations and dispersion within the atmosphere, making them vital for both climate and air quality research. The primary objective of investigating NPF events is to precisely determine their occurrence dates. In this study, we introduced the ConvNeXt model for the first time to identify NPF events, and compared its performance with two other deep learning models, EfficientNet and Swin Transformer. Our main aim was to automate an objective identification and classification of NPF events accurately. All three models employed transfer learning to effectively capture critical features associated with NPF. Our results demonstrated that the ConvNeXt model significantly outperformed the other models, achieving an impressive accuracy rate of 95.3% on event days, surpassing EfficientNet (92.8%) and Swin Transformer (94.9%). Furthermore, we performed tests using different ConvNeXt variants (ConvNeXt-T/S/B/L/XL) and different pre-training weights, revealing that different configurations of ConvNeXt models exhibited improved NPF event recognition capabilities. Finally, we conducted generalizability experiments using the ConvNeXt-XL model, achieving the highest accuracy of 96.4% on event days. This study not only underscores the recognition prowess of ConvNeXt models but also highlights their practical utility in accurately detecting NPF events in real-world scenarios. This contribution aids in advancing Atmospheric our comprehension of aerosol dynamics in atmospheric environments, providing valuable insights for climate and air quality research.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10509 - Meteorology and atmospheric sciences
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Atmospheric Environment
ISSN
1352-2310
e-ISSN
1873-2844
Svazek periodika
327
Číslo periodika v rámci svazku
15 June
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
120487
Kód UT WoS článku
001224901200001
EID výsledku v databázi Scopus
2-s2.0-85189433032