Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Recognition of Emotions in German Speech Using Gaussian Mixture Models

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985882%3A_____%2F09%3A00356050" target="_blank" >RIV/67985882:_____/09:00356050 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Recognition of Emotions in German Speech Using Gaussian Mixture Models

  • Popis výsledku v původním jazyce

    The contribution describes experiments with recognition of emotions in German speech signal based oil the same principle as recognition of speakers. The most robust algorithm for speaker recognition is based On Gaussian Mixture Models (GMM). We examine three parameter Sets: the first contains suprasegmental features, in the second are segmental features and the last is a combination of the two previous parameter sets. Further we want to explore the dependency of the classification accuracy Oil the number of GMM model components. The aim of this contribution is a recommendation the number of GMM components and the optimal selection of speech parameters for emotion recognition in German speech.

  • Název v anglickém jazyce

    Recognition of Emotions in German Speech Using Gaussian Mixture Models

  • Popis výsledku anglicky

    The contribution describes experiments with recognition of emotions in German speech signal based oil the same principle as recognition of speakers. The most robust algorithm for speaker recognition is based On Gaussian Mixture Models (GMM). We examine three parameter Sets: the first contains suprasegmental features, in the second are segmental features and the last is a combination of the two previous parameter sets. Further we want to explore the dependency of the classification accuracy Oil the number of GMM model components. The aim of this contribution is a recommendation the number of GMM components and the optimal selection of speech parameters for emotion recognition in German speech.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    JA - Elektronika a optoelektronika, elektrotechnika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/OC08010" target="_blank" >OC08010: Analýza, modelování a syntéza stylů a emočních stavů v řečovém projevu</a><br>

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2009

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    MULTIMODAL SIGNAL: COGNITIVE AND ALGORITHMIC ISSUES

  • ISBN

    978-3-642-00524-4

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

  • Název nakladatele

    SPRINGER-VERLAG

  • Místo vydání

    Berlin

  • Místo konání akce

    Vietri sul Mare

  • Datum konání akce

    21. 4. 2008

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000265464200026