Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Structural insight into nanoscale inhomogeneity of electrical properties in highly conductive polycrystalline ZnO thin films doped using methane

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985882%3A_____%2F24%3A00585283" target="_blank" >RIV/67985882:_____/24:00585283 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://iopscience.iop.org/article/10.1088/1361-6463/ad1791" target="_blank" >https://iopscience.iop.org/article/10.1088/1361-6463/ad1791</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/1361-6463/ad1791" target="_blank" >10.1088/1361-6463/ad1791</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Structural insight into nanoscale inhomogeneity of electrical properties in highly conductive polycrystalline ZnO thin films doped using methane

  • Popis výsledku v původním jazyce

    Recently, methane has been demonstrated as an effective n-type dopant for ZnO thin films deposited using the RF-magnetron sputtering method. It was shown that the major electrical doping effect of methane is caused by hydrogen released during methane decomposition. This work investigates the origin of the observed increase in conductivity of methane-doped ZnO films with the increase in thickness. The study is aimed at describing the nature of this thickness-dependent effect through a detailed analysis of the thickness-dependent morphology and crystalline structure. A combination of structural, electrical, and optical characterization revealed a transition from fine-grained films with a random orientation at early stages to partially (002)-textured films with columnar grains at later stages of growth. It is demonstrated that grain/sub-grain boundaries increase the electrical conductivity and that the contribution of such buried inner boundaries increases with increasing thickness. It is proposed that hydrogen diffuses along the grain and sub-grain boundaries during growth, leading to continuous doping of the buried interfaces. This hydrogen diffusion mechanism results in an apparent 'additional doping' of thicker films. The results provide new insights into the thickness-dependent conductivity of doped polycrystalline ZnO films mediated by hydrogen diffusion along internal interfaces.

  • Název v anglickém jazyce

    Structural insight into nanoscale inhomogeneity of electrical properties in highly conductive polycrystalline ZnO thin films doped using methane

  • Popis výsledku anglicky

    Recently, methane has been demonstrated as an effective n-type dopant for ZnO thin films deposited using the RF-magnetron sputtering method. It was shown that the major electrical doping effect of methane is caused by hydrogen released during methane decomposition. This work investigates the origin of the observed increase in conductivity of methane-doped ZnO films with the increase in thickness. The study is aimed at describing the nature of this thickness-dependent effect through a detailed analysis of the thickness-dependent morphology and crystalline structure. A combination of structural, electrical, and optical characterization revealed a transition from fine-grained films with a random orientation at early stages to partially (002)-textured films with columnar grains at later stages of growth. It is demonstrated that grain/sub-grain boundaries increase the electrical conductivity and that the contribution of such buried inner boundaries increases with increasing thickness. It is proposed that hydrogen diffuses along the grain and sub-grain boundaries during growth, leading to continuous doping of the buried interfaces. This hydrogen diffusion mechanism results in an apparent 'additional doping' of thicker films. The results provide new insights into the thickness-dependent conductivity of doped polycrystalline ZnO films mediated by hydrogen diffusion along internal interfaces.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10306 - Optics (including laser optics and quantum optics)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA23-05915S" target="_blank" >GA23-05915S: Transport elektrického náboje v heterostrukturách polovodičových oxidů s halogenidy mědi</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Physics D-Applied Physics

  • ISSN

    0022-3727

  • e-ISSN

    1361-6463

  • Svazek periodika

    57

  • Číslo periodika v rámci svazku

    15

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

    155101

  • Kód UT WoS článku

    001144948700001

  • EID výsledku v databázi Scopus