Monitoring giant landslide detachment planes in the era of big data analytics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985891%3A_____%2F17%3A00481928" target="_blank" >RIV/67985891:_____/17:00481928 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-53487-9_38" target="_blank" >http://dx.doi.org/10.1007/978-3-319-53487-9_38</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-53487-9_38" target="_blank" >10.1007/978-3-319-53487-9_38</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Monitoring giant landslide detachment planes in the era of big data analytics
Popis výsledku v původním jazyce
A small mesh of sensors which monitor movements across detachment planes of the giant San Andrés Landslide on the northeastern lobe of El Hierro in the Canary Islands was established in 2013. In this paper we present the results obtained over a two year period spanning from October 2013 to October 2015. Our results demonstrate that the detachment planes are affected by sinistral strike slip displacements and subsidence of the depleted mass of the landslide. While these general trends are consistent the movements recorded at particular monitoring points differ in detail as one site is characterised by progressive strike slip and dip slip trends while another is characterised by movement pulses and reversals in the sense of movement. These findings contrast markedly with suggestions that the giant landslide is inactive and demonstrate that its reactivation is a possibility which cannot be dismissed categorically. Big data analytics have been used to identify interdependence between the recorded movements and a range of climatic and geophysical variables such as seismic data, tidal data, and geomagnetic data. We have found that the recorded movements correlate only weakly or moderately with climatic and seismic parameters but strongly to the horizontal and vertical intensity of the magnetic field. These findings are rather unexpected and we emphasise that special care must be taken in pushing the conclusions of a purely numerical analysis. The advantages of adopting a big data mindset led us to make significant improvements to the instrumental infrastructure in early 2016. These incremental improvements to the small mesh of sensors are driven partly by our desire to understand the kinematic behaviour of landslide itself and partly by our desire to explore the potential of big data analytics in geoscientific research.
Název v anglickém jazyce
Monitoring giant landslide detachment planes in the era of big data analytics
Popis výsledku anglicky
A small mesh of sensors which monitor movements across detachment planes of the giant San Andrés Landslide on the northeastern lobe of El Hierro in the Canary Islands was established in 2013. In this paper we present the results obtained over a two year period spanning from October 2013 to October 2015. Our results demonstrate that the detachment planes are affected by sinistral strike slip displacements and subsidence of the depleted mass of the landslide. While these general trends are consistent the movements recorded at particular monitoring points differ in detail as one site is characterised by progressive strike slip and dip slip trends while another is characterised by movement pulses and reversals in the sense of movement. These findings contrast markedly with suggestions that the giant landslide is inactive and demonstrate that its reactivation is a possibility which cannot be dismissed categorically. Big data analytics have been used to identify interdependence between the recorded movements and a range of climatic and geophysical variables such as seismic data, tidal data, and geomagnetic data. We have found that the recorded movements correlate only weakly or moderately with climatic and seismic parameters but strongly to the horizontal and vertical intensity of the magnetic field. These findings are rather unexpected and we emphasise that special care must be taken in pushing the conclusions of a purely numerical analysis. The advantages of adopting a big data mindset led us to make significant improvements to the instrumental infrastructure in early 2016. These incremental improvements to the small mesh of sensors are driven partly by our desire to understand the kinematic behaviour of landslide itself and partly by our desire to explore the potential of big data analytics in geoscientific research.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10505 - Geology
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ16-12227Y" target="_blank" >GJ16-12227Y: Dynamika megasesuvu na El Hierru analyzovaná pomocí "big data" za účelem predikce budoucího chování megasesuvů i na dalších vulkanických ostrovech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Advancing Culture of Living with Landslides
ISBN
978-3-319-53486-2
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
333-340
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Ljubljana
Datum konání akce
29. 5. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000438667600038