3D Dilatometer Time-Series Analysis for a Better Understanding of the Dynamics of a Giant Slow-Moving Landslide
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985891%3A_____%2F20%3A00532904" target="_blank" >RIV/67985891:_____/20:00532904 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00025615:_____/20:N0000039
Výsledek na webu
<a href="https://www.mdpi.com/2076-3417/10/16/5469" target="_blank" >https://www.mdpi.com/2076-3417/10/16/5469</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/app10165469" target="_blank" >10.3390/app10165469</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
3D Dilatometer Time-Series Analysis for a Better Understanding of the Dynamics of a Giant Slow-Moving Landslide
Popis výsledku v původním jazyce
Featured Application Analysis of monitoring data from very slow-moving landslides. This paper presents a methodological approach to the time-series analysis of movement monitoring data of a large slow-moving landslide. It combines different methods of data manipulation to decrease the subjectivity of a researcher and provides a fully quantitative approach for analyzing large amounts of data. The methodology was applied to 3D dilatometric data acquired from the giant San Andres Landslide on El Hierro in the Canary Islands in the period from October 2013 to April 2019. The landslide is a creeping volcanic flank collapse showing a decrease of speed of movement during the monitoring period. Despite the fact that clear and unambiguous geological interpretations cannot be made, the analysis is capable of showing correlations of the changes of the movement with increased seismicity and, to some point, with precipitation. We consider this methodology being the first step in automatizing and increasing the objectivity of analysis of slow-moving landslide monitoring data.
Název v anglickém jazyce
3D Dilatometer Time-Series Analysis for a Better Understanding of the Dynamics of a Giant Slow-Moving Landslide
Popis výsledku anglicky
Featured Application Analysis of monitoring data from very slow-moving landslides. This paper presents a methodological approach to the time-series analysis of movement monitoring data of a large slow-moving landslide. It combines different methods of data manipulation to decrease the subjectivity of a researcher and provides a fully quantitative approach for analyzing large amounts of data. The methodology was applied to 3D dilatometric data acquired from the giant San Andres Landslide on El Hierro in the Canary Islands in the period from October 2013 to April 2019. The landslide is a creeping volcanic flank collapse showing a decrease of speed of movement during the monitoring period. Despite the fact that clear and unambiguous geological interpretations cannot be made, the analysis is capable of showing correlations of the changes of the movement with increased seismicity and, to some point, with precipitation. We consider this methodology being the first step in automatizing and increasing the objectivity of analysis of slow-moving landslide monitoring data.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10505 - Geology
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ16-12227Y" target="_blank" >GJ16-12227Y: Dynamika megasesuvu na El Hierru analyzovaná pomocí "big data" za účelem predikce budoucího chování megasesuvů i na dalších vulkanických ostrovech</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Sciences-Basel
ISSN
2076-3417
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
16
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
16
Strana od-do
5469
Kód UT WoS článku
000564874700001
EID výsledku v databázi Scopus
2-s2.0-85089898509