Application of novel ensemble models to improve landslide susceptibility mapping reliability
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985891%3A_____%2F23%3A00573977" target="_blank" >RIV/67985891:_____/23:00573977 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11310/23:10468601
Výsledek na webu
<a href="https://doi.org/10.1007/s10064-023-03328-8" target="_blank" >https://doi.org/10.1007/s10064-023-03328-8</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10064-023-03328-8" target="_blank" >10.1007/s10064-023-03328-8</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Application of novel ensemble models to improve landslide susceptibility mapping reliability
Popis výsledku v původním jazyce
Most landslides in the Eastern Golestan province in Iran occur in the Doji watershed. Their number, however, lies at the lower limit for reliable statistical analyses. By selecting a statistical sample in an area with rather homogeneous conditions (thereby reducing the number of meaningful covariates), significant insights can nevertheless be obtained. We relied on an inventory of 145 landslides which discerns between types of movement and implemented six machine learning algorithms (Decorate, DE-REPTree, Random Subspace, RS-REPTree, Dagging, and DA-REPTree) to produce landslide susceptibility maps. This allowed us to evaluate the relative importance and the effect of covariates in the models and identify factors that are consistently associated with the presence of landslides. Our results demonstrate that, even for a small landslide inventory, reliable susceptibility maps can be produced for homogeneous landscapes. We discuss that our approach could be used to assess the reliability of statistical approaches at small scales, where a distinctive trigger is lacking.
Název v anglickém jazyce
Application of novel ensemble models to improve landslide susceptibility mapping reliability
Popis výsledku anglicky
Most landslides in the Eastern Golestan province in Iran occur in the Doji watershed. Their number, however, lies at the lower limit for reliable statistical analyses. By selecting a statistical sample in an area with rather homogeneous conditions (thereby reducing the number of meaningful covariates), significant insights can nevertheless be obtained. We relied on an inventory of 145 landslides which discerns between types of movement and implemented six machine learning algorithms (Decorate, DE-REPTree, Random Subspace, RS-REPTree, Dagging, and DA-REPTree) to produce landslide susceptibility maps. This allowed us to evaluate the relative importance and the effect of covariates in the models and identify factors that are consistently associated with the presence of landslides. Our results demonstrate that, even for a small landslide inventory, reliable susceptibility maps can be produced for homogeneous landscapes. We discuss that our approach could be used to assess the reliability of statistical approaches at small scales, where a distinctive trigger is lacking.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10505 - Geology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Bulletin of Engineering Geology and the Environment
ISSN
1435-9529
e-ISSN
1435-9537
Svazek periodika
82
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
21
Strana od-do
309
Kód UT WoS článku
001027857000001
EID výsledku v databázi Scopus
2-s2.0-85165221970