Topographic Wetness Index calculation guidelines based on measured soil moisture and plant species composition
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985939%3A_____%2F21%3A00547082" target="_blank" >RIV/67985939:_____/21:00547082 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60460709:41320/21:89417 RIV/60460709:41330/21:89937
Výsledek na webu
<a href="https://doi.org/10.1016/j.scitotenv.2020.143785" target="_blank" >https://doi.org/10.1016/j.scitotenv.2020.143785</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.scitotenv.2020.143785" target="_blank" >10.1016/j.scitotenv.2020.143785</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Topographic Wetness Index calculation guidelines based on measured soil moisture and plant species composition
Popis výsledku v původním jazyce
Soil moisture controls environmental processes and spedes distributions, but it is difficult to measure and interpolate across space. Topographic Wetness Index (TWI) derived from digital elevation model is therefore often used as a proxy for soil moisture. However, different algorithms can be used to calculate TWI and this potentially affects TWI relationship with soil moisture and species assemblages. To disentangle insufficiently-known effects of different algorithms on TWI relation with soil moisture and plant species composition, we measured the root-zone soil moisture throughout a growing season and recorded vascular plants and bryophytes in 45 temperate forest plots. For each plot, we calculated 26 TWI variants from a LiDAR-based digital terrain model and related these TWI variants to the measured soil moisture and moisture-controlled species assemblages of vascular plants and bryophytes. A flow accumulation algorithm determined the ability of the TWI to predict soil moisture, while the flow width and slope algorithms had only a small effects. The TWI calculated with the most often used single-flow D8 algorithm explained less than half of the variation in soil moisture and species composition explained by the TWI calculated with the multiple-flow FD8 algorithm. Flow dispersion used in the 1D8 algorithm strongly affected the TWI performance, and a flow dispersion dose to 1.0 resulted in the TWI best related to the soil moisture and spedes assemblages. Using downslope gradient instead of the local slope gradient can strongly decrease TWI performance. Our results clearly showed that the method used to calculate TWI affects study conclusion. However, TMI calculation is often not specified and thus impossible to reproduce and compare among studies. We therefore provide guidelines for TWI calculation and recommend the FD8 flow algorithm with a flow dispersion close to 1.0, flow width equal to the raster cell size and local slope gradient for TWI calculation.
Název v anglickém jazyce
Topographic Wetness Index calculation guidelines based on measured soil moisture and plant species composition
Popis výsledku anglicky
Soil moisture controls environmental processes and spedes distributions, but it is difficult to measure and interpolate across space. Topographic Wetness Index (TWI) derived from digital elevation model is therefore often used as a proxy for soil moisture. However, different algorithms can be used to calculate TWI and this potentially affects TWI relationship with soil moisture and species assemblages. To disentangle insufficiently-known effects of different algorithms on TWI relation with soil moisture and plant species composition, we measured the root-zone soil moisture throughout a growing season and recorded vascular plants and bryophytes in 45 temperate forest plots. For each plot, we calculated 26 TWI variants from a LiDAR-based digital terrain model and related these TWI variants to the measured soil moisture and moisture-controlled species assemblages of vascular plants and bryophytes. A flow accumulation algorithm determined the ability of the TWI to predict soil moisture, while the flow width and slope algorithms had only a small effects. The TWI calculated with the most often used single-flow D8 algorithm explained less than half of the variation in soil moisture and species composition explained by the TWI calculated with the multiple-flow FD8 algorithm. Flow dispersion used in the 1D8 algorithm strongly affected the TWI performance, and a flow dispersion dose to 1.0 resulted in the TWI best related to the soil moisture and spedes assemblages. Using downslope gradient instead of the local slope gradient can strongly decrease TWI performance. Our results clearly showed that the method used to calculate TWI affects study conclusion. However, TMI calculation is often not specified and thus impossible to reproduce and compare among studies. We therefore provide guidelines for TWI calculation and recommend the FD8 flow algorithm with a flow dispersion close to 1.0, flow width equal to the raster cell size and local slope gradient for TWI calculation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10618 - Ecology
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-13998S" target="_blank" >GA17-13998S: Lesní mikroklima - přehlížený článek mezi diverzitou rostlin a klimatickou změnou</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Science of the Total Environment
ISSN
0048-9697
e-ISSN
1879-1026
Svazek periodika
757
Číslo periodika v rámci svazku
25 February
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
10
Strana od-do
143785
Kód UT WoS článku
000604432900063
EID výsledku v databázi Scopus
2-s2.0-85096555917