Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Unveiling the Potential of Drone-Borne Optical Imagery in Forest Ecology: A Study on the Recognition and Mapping of Two Evergreen Coniferous Species

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985939%3A_____%2F23%3A00576527" target="_blank" >RIV/67985939:_____/23:00576527 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60460709:41320/23:97168 RIV/60076658:12310/23:43906663

  • Výsledek na webu

    <a href="https://doi.org/10.3390/rs15184394" target="_blank" >https://doi.org/10.3390/rs15184394</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/rs15184394" target="_blank" >10.3390/rs15184394</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Unveiling the Potential of Drone-Borne Optical Imagery in Forest Ecology: A Study on the Recognition and Mapping of Two Evergreen Coniferous Species

  • Popis výsledku v původním jazyce

    For tasks involving tree crown recognition for counting or mapping multiple tree species, dedicated neural networks designed for object detection and counting, such as the YOLOv8 model, are more suitable and reliable. Although more complex image segmentation algorithms can also yield satisfactory results for mapping, their accuracy may be lower, and the learning process may be longer and computationally intensive. Instance segmentation neural networks are primarily recommended for tasks involving the assessment of separate tree crowns, with results requiring careful expert validation.nWe stress to carefully consider the specific research task and the complexity of object classification when selecting segmentation methods. More complex tasks, such as differentiating between visually similar tree species, may necessitate additional strategies or modifications to existing segmentation algorithms to enhance accuracy. The continuous development of robust and accurate segmentation methods for such intricate tasks is an ongoing focus of research in the fields of remote sensing and computer vision.nSolving practical problems related to tree recognition requires a multi-step process that involves collaboration among experts with different skills and experiences. It is essential to adopt biology- and landscape-oriented approaches when applying remote sensing methods, which requires proficiency not only in remote sensing and deep learning techniques but also in understanding the biological aspects of forest ecosystems. This approach will not only aid in collecting primary remote data but will also significantly enhance the quality of the final recognition results.

  • Název v anglickém jazyce

    Unveiling the Potential of Drone-Borne Optical Imagery in Forest Ecology: A Study on the Recognition and Mapping of Two Evergreen Coniferous Species

  • Popis výsledku anglicky

    For tasks involving tree crown recognition for counting or mapping multiple tree species, dedicated neural networks designed for object detection and counting, such as the YOLOv8 model, are more suitable and reliable. Although more complex image segmentation algorithms can also yield satisfactory results for mapping, their accuracy may be lower, and the learning process may be longer and computationally intensive. Instance segmentation neural networks are primarily recommended for tasks involving the assessment of separate tree crowns, with results requiring careful expert validation.nWe stress to carefully consider the specific research task and the complexity of object classification when selecting segmentation methods. More complex tasks, such as differentiating between visually similar tree species, may necessitate additional strategies or modifications to existing segmentation algorithms to enhance accuracy. The continuous development of robust and accurate segmentation methods for such intricate tasks is an ongoing focus of research in the fields of remote sensing and computer vision.nSolving practical problems related to tree recognition requires a multi-step process that involves collaboration among experts with different skills and experiences. It is essential to adopt biology- and landscape-oriented approaches when applying remote sensing methods, which requires proficiency not only in remote sensing and deep learning techniques but also in understanding the biological aspects of forest ecosystems. This approach will not only aid in collecting primary remote data but will also significantly enhance the quality of the final recognition results.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10618 - Ecology

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Remote Sensing

  • ISSN

    2072-4292

  • e-ISSN

    2072-4292

  • Svazek periodika

    15

  • Číslo periodika v rámci svazku

    18

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    16

  • Strana od-do

    4394

  • Kód UT WoS článku

    001074095800001

  • EID výsledku v databázi Scopus

    2-s2.0-85172930063