Unveiling the Potential of Drone-Borne Optical Imagery in Forest Ecology: A Study on the Recognition and Mapping of Two Evergreen Coniferous Species
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985939%3A_____%2F23%3A00576527" target="_blank" >RIV/67985939:_____/23:00576527 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60460709:41320/23:97168 RIV/60076658:12310/23:43906663
Výsledek na webu
<a href="https://doi.org/10.3390/rs15184394" target="_blank" >https://doi.org/10.3390/rs15184394</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/rs15184394" target="_blank" >10.3390/rs15184394</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Unveiling the Potential of Drone-Borne Optical Imagery in Forest Ecology: A Study on the Recognition and Mapping of Two Evergreen Coniferous Species
Popis výsledku v původním jazyce
For tasks involving tree crown recognition for counting or mapping multiple tree species, dedicated neural networks designed for object detection and counting, such as the YOLOv8 model, are more suitable and reliable. Although more complex image segmentation algorithms can also yield satisfactory results for mapping, their accuracy may be lower, and the learning process may be longer and computationally intensive. Instance segmentation neural networks are primarily recommended for tasks involving the assessment of separate tree crowns, with results requiring careful expert validation.nWe stress to carefully consider the specific research task and the complexity of object classification when selecting segmentation methods. More complex tasks, such as differentiating between visually similar tree species, may necessitate additional strategies or modifications to existing segmentation algorithms to enhance accuracy. The continuous development of robust and accurate segmentation methods for such intricate tasks is an ongoing focus of research in the fields of remote sensing and computer vision.nSolving practical problems related to tree recognition requires a multi-step process that involves collaboration among experts with different skills and experiences. It is essential to adopt biology- and landscape-oriented approaches when applying remote sensing methods, which requires proficiency not only in remote sensing and deep learning techniques but also in understanding the biological aspects of forest ecosystems. This approach will not only aid in collecting primary remote data but will also significantly enhance the quality of the final recognition results.
Název v anglickém jazyce
Unveiling the Potential of Drone-Borne Optical Imagery in Forest Ecology: A Study on the Recognition and Mapping of Two Evergreen Coniferous Species
Popis výsledku anglicky
For tasks involving tree crown recognition for counting or mapping multiple tree species, dedicated neural networks designed for object detection and counting, such as the YOLOv8 model, are more suitable and reliable. Although more complex image segmentation algorithms can also yield satisfactory results for mapping, their accuracy may be lower, and the learning process may be longer and computationally intensive. Instance segmentation neural networks are primarily recommended for tasks involving the assessment of separate tree crowns, with results requiring careful expert validation.nWe stress to carefully consider the specific research task and the complexity of object classification when selecting segmentation methods. More complex tasks, such as differentiating between visually similar tree species, may necessitate additional strategies or modifications to existing segmentation algorithms to enhance accuracy. The continuous development of robust and accurate segmentation methods for such intricate tasks is an ongoing focus of research in the fields of remote sensing and computer vision.nSolving practical problems related to tree recognition requires a multi-step process that involves collaboration among experts with different skills and experiences. It is essential to adopt biology- and landscape-oriented approaches when applying remote sensing methods, which requires proficiency not only in remote sensing and deep learning techniques but also in understanding the biological aspects of forest ecosystems. This approach will not only aid in collecting primary remote data but will also significantly enhance the quality of the final recognition results.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10618 - Ecology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Remote Sensing
ISSN
2072-4292
e-ISSN
2072-4292
Svazek periodika
15
Číslo periodika v rámci svazku
18
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
16
Strana od-do
4394
Kód UT WoS článku
001074095800001
EID výsledku v databázi Scopus
2-s2.0-85172930063