Optimising occurrence data in species distribution models: sample size, positional uncertainty, and sampling bias matter
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985939%3A_____%2F24%3A00599097" target="_blank" >RIV/67985939:_____/24:00599097 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60460709:41330/24:98847
Výsledek na webu
<a href="https://doi.org/10.1111/ecog.07294" target="_blank" >https://doi.org/10.1111/ecog.07294</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1111/ecog.07294" target="_blank" >10.1111/ecog.07294</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimising occurrence data in species distribution models: sample size, positional uncertainty, and sampling bias matter
Popis výsledku v původním jazyce
Species distribution models (SDMs) have proven valuable in filling gaps in our knowledge of species occurrences. However, despite their broad applicability, SDMs exhibit critical shortcomings due to limitations in species occurrence data. These limitations include, in particular, issues related to sample size, positional uncertainty, and sampling bias. In addition, it is widely recognised that the quality of SDMs as well as the approaches used to mitigate the impact of the aforementioned data limitations depend on species ecology. While numerous studies have evaluated the effects of these data limitations on SDM performance, a synthesis of their results is lacking. However, without a comprehensive understanding of their individual and combined effects, our ability to predict the influence of these issues on the quality of modelled species–environment associations remains largely uncertain, limiting the value of model outputs. In this paper, we review studies that have evaluated the effects of sample size, positional uncertainty, sampling bias, and species ecology on SDMs outputs. We build upon their findings to provide recommendations for the critical assessment of species data intended for use in SDMs.
Název v anglickém jazyce
Optimising occurrence data in species distribution models: sample size, positional uncertainty, and sampling bias matter
Popis výsledku anglicky
Species distribution models (SDMs) have proven valuable in filling gaps in our knowledge of species occurrences. However, despite their broad applicability, SDMs exhibit critical shortcomings due to limitations in species occurrence data. These limitations include, in particular, issues related to sample size, positional uncertainty, and sampling bias. In addition, it is widely recognised that the quality of SDMs as well as the approaches used to mitigate the impact of the aforementioned data limitations depend on species ecology. While numerous studies have evaluated the effects of these data limitations on SDM performance, a synthesis of their results is lacking. However, without a comprehensive understanding of their individual and combined effects, our ability to predict the influence of these issues on the quality of modelled species–environment associations remains largely uncertain, limiting the value of model outputs. In this paper, we review studies that have evaluated the effects of sample size, positional uncertainty, sampling bias, and species ecology on SDMs outputs. We build upon their findings to provide recommendations for the critical assessment of species data intended for use in SDMs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10618 - Ecology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Ecography
ISSN
0906-7590
e-ISSN
1600-0587
Svazek periodika
2024
Číslo periodika v rámci svazku
12
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
20
Strana od-do
e07294
Kód UT WoS článku
001284244200001
EID výsledku v databázi Scopus
2-s2.0-85200141679