Cognitive Unity of Thales’ Mathematics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985955%3A_____%2F20%3A00539246" target="_blank" >RIV/67985955:_____/20:00539246 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11410/20:10465767
Výsledek na webu
<a href="https://doi.org/10.1007/s10699-019-09622-7" target="_blank" >https://doi.org/10.1007/s10699-019-09622-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10699-019-09622-7" target="_blank" >10.1007/s10699-019-09622-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Cognitive Unity of Thales’ Mathematics
Popis výsledku v původním jazyce
The aim of the paper is to argue for the cognitive unity of the mathematical results ascribed by ancient authors to Thales. These results are late ascriptions and so it is difficult to say anything certain about them on philological grounds. I will seek characteristic features of the cognitive unity of the mathematical results ascribed to Thales by comparing them with Galilean physics. This might seem at a first sight a rather unusual move. Nevertheless, I suggest viewing the process of turning geometry into an axiomatic-deductive science as a process of idealization in mathematics that is parallel to the process of idealization in physics. In Kvasz (Acta Phys Slovaca 62:519–614, 2012) I offered an epistemological reconstruction of the process of idealization in physics during the scientific revolution of the seventeenth century. In the present paper I try to employ these epistemological insights in the process of idealization in physics and propose a reconstruction of the cognitive unity of the mathematical results ascribed to Thales, who can, on the basis of these ascriptions, be seen as one of the initiators of idealization in mathematics.
Název v anglickém jazyce
Cognitive Unity of Thales’ Mathematics
Popis výsledku anglicky
The aim of the paper is to argue for the cognitive unity of the mathematical results ascribed by ancient authors to Thales. These results are late ascriptions and so it is difficult to say anything certain about them on philological grounds. I will seek characteristic features of the cognitive unity of the mathematical results ascribed to Thales by comparing them with Galilean physics. This might seem at a first sight a rather unusual move. Nevertheless, I suggest viewing the process of turning geometry into an axiomatic-deductive science as a process of idealization in mathematics that is parallel to the process of idealization in physics. In Kvasz (Acta Phys Slovaca 62:519–614, 2012) I offered an epistemological reconstruction of the process of idealization in physics during the scientific revolution of the seventeenth century. In the present paper I try to employ these epistemological insights in the process of idealization in physics and propose a reconstruction of the cognitive unity of the mathematical results ascribed to Thales, who can, on the basis of these ascriptions, be seen as one of the initiators of idealization in mathematics.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
60301 - Philosophy, History and Philosophy of science and technology
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Foundations of Science
ISSN
1233-1821
e-ISSN
—
Svazek periodika
25
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
17
Strana od-do
737-753
Kód UT WoS článku
000560722300012
EID výsledku v databázi Scopus
2-s2.0-85072174101