Badiou and the Ontological Limits of Mathematics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985955%3A_____%2F20%3A00542477" target="_blank" >RIV/67985955:_____/20:00542477 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3986/FV.41.2.05" target="_blank" >https://doi.org/10.3986/FV.41.2.05</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3986/FV.41.2.05" target="_blank" >10.3986/FV.41.2.05</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Badiou and the Ontological Limits of Mathematics
Popis výsledku v původním jazyce
Badiou’s philosophy draws upon mathematics as its scientific condition. The “axiomatic decision” for mathematics can be interpreted as a historically conditioned choice responding to contemporary sophistry that dismissed the concept of truth. However, various sections of mathematics (set theory, category theory, and theory of great cardinals) are selected for a condition of philosophy to become. This multi-conditioning is a symptom of a lacuna in Badiou’s philosophy that emerged with relating philosophy to this or that section of mathematics. The lacuna is explained with Easton’s theorem as the effect of the relation between philosophy (metastructure) and a section of mathematics (the presented situation). Easton’s theorem indicates ontological limits of mathematics. The door is open for the relating of philosophy to non-mathematical science (Marxism and Lacanian psychoanalysis).
Název v anglickém jazyce
Badiou and the Ontological Limits of Mathematics
Popis výsledku anglicky
Badiou’s philosophy draws upon mathematics as its scientific condition. The “axiomatic decision” for mathematics can be interpreted as a historically conditioned choice responding to contemporary sophistry that dismissed the concept of truth. However, various sections of mathematics (set theory, category theory, and theory of great cardinals) are selected for a condition of philosophy to become. This multi-conditioning is a symptom of a lacuna in Badiou’s philosophy that emerged with relating philosophy to this or that section of mathematics. The lacuna is explained with Easton’s theorem as the effect of the relation between philosophy (metastructure) and a section of mathematics (the presented situation). Easton’s theorem indicates ontological limits of mathematics. The door is open for the relating of philosophy to non-mathematical science (Marxism and Lacanian psychoanalysis).
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
60301 - Philosophy, History and Philosophy of science and technology
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-23955S" target="_blank" >GA17-23955S: Jednota a mnohost v současném myšlení</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Filozofski Vestnik
ISSN
0353-4510
e-ISSN
1581-1239
Svazek periodika
41
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
SI - Slovinská republika
Počet stran výsledku
13
Strana od-do
105-117
Kód UT WoS článku
000604918400014
EID výsledku v databázi Scopus
2-s2.0-85104821322