Inquisitive Heyting Algebras
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985955%3A_____%2F21%3A00546145" target="_blank" >RIV/67985955:_____/21:00546145 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s11225-020-09936-9" target="_blank" >https://doi.org/10.1007/s11225-020-09936-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11225-020-09936-9" target="_blank" >10.1007/s11225-020-09936-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Inquisitive Heyting Algebras
Popis výsledku v původním jazyce
In this paper we introduce a class of inquisitive Heyting algebras as algebraic structures that are isomorphic to algebras of finite antichains of bounded implicative meet semilattices. It is argued that these structures are suitable for algebraic semantics of inquisitive superintuitionistic logics, i.e. logics of questions based on intuitionistic logic and its extensions. We explain how questions are represented in these structures (prime elements represent declarative propositions, non-prime elements represent questions, join is a question-forming operation) and provide several alternative characterizations of these algebras. For instance, it is shown that a Heyting algebra is inquisitive if and only if its prime filters and filters generated by sets of prime elements coincide and prime elements are closed under relative pseudocomplement. We prove that the weakest inquisitive superintuitionistic logic is sound with respect to a Heyting algebra iff the algebra is what we call a homomorphic p-image of some inquisitive Heyting algebra. It is also shown that a logic is inquisitive iff its Lindenbaum–Tarski algebra is an inquisitive Heyting algebra.
Název v anglickém jazyce
Inquisitive Heyting Algebras
Popis výsledku anglicky
In this paper we introduce a class of inquisitive Heyting algebras as algebraic structures that are isomorphic to algebras of finite antichains of bounded implicative meet semilattices. It is argued that these structures are suitable for algebraic semantics of inquisitive superintuitionistic logics, i.e. logics of questions based on intuitionistic logic and its extensions. We explain how questions are represented in these structures (prime elements represent declarative propositions, non-prime elements represent questions, join is a question-forming operation) and provide several alternative characterizations of these algebras. For instance, it is shown that a Heyting algebra is inquisitive if and only if its prime filters and filters generated by sets of prime elements coincide and prime elements are closed under relative pseudocomplement. We prove that the weakest inquisitive superintuitionistic logic is sound with respect to a Heyting algebra iff the algebra is what we call a homomorphic p-image of some inquisitive Heyting algebra. It is also shown that a logic is inquisitive iff its Lindenbaum–Tarski algebra is an inquisitive Heyting algebra.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
60301 - Philosophy, History and Philosophy of science and technology
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-18675S" target="_blank" >GA20-18675S: Povaha logických forem a moderní logika</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Studia Logica
ISSN
0039-3215
e-ISSN
1572-8730
Svazek periodika
109
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
23
Strana od-do
995-1017
Kód UT WoS článku
000619395100002
EID výsledku v databázi Scopus
2-s2.0-85101209895