Structural Completeness and Superintuitionistic Inquisitive Logics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985955%3A_____%2F23%3A00575743" target="_blank" >RIV/67985955:_____/23:00575743 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-39784-4_12" target="_blank" >https://doi.org/10.1007/978-3-031-39784-4_12</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-39784-4_12" target="_blank" >10.1007/978-3-031-39784-4_12</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Structural Completeness and Superintuitionistic Inquisitive Logics
Popis výsledku v původním jazyce
In this paper, the notion of structural completeness is explored in the context of a generalized class of superintuitionistic logics involving also systems that are not closed under uniform substitution. We just require that each logic must be closed under D-substitutions assigning to atomic formulas only disjunction-free formulas. For these systems we introduce four different notions of structural completeness and study how they are related. We focus on superintuitionistic inquisitive logics that validate a schema called Split and have the disjunction property. In these logics disjunction can be interpreted in the sense of inquisitive semantics as a question forming operator. It is shown that a logic is structurally complete with respect to D-substitutions if and only if it includes the weakest superintuitionistic inquisitive logic. Various consequences of this result are explored. For example, it is shown that every superintuitionistic inquisitive logic can be characterized by a Kripke model built up from D-substitutions. Additionally, we resolve a conjecture concerning superintuitionistic inquisitive logics due to Miglioli et al..
Název v anglickém jazyce
Structural Completeness and Superintuitionistic Inquisitive Logics
Popis výsledku anglicky
In this paper, the notion of structural completeness is explored in the context of a generalized class of superintuitionistic logics involving also systems that are not closed under uniform substitution. We just require that each logic must be closed under D-substitutions assigning to atomic formulas only disjunction-free formulas. For these systems we introduce four different notions of structural completeness and study how they are related. We focus on superintuitionistic inquisitive logics that validate a schema called Split and have the disjunction property. In these logics disjunction can be interpreted in the sense of inquisitive semantics as a question forming operator. It is shown that a logic is structurally complete with respect to D-substitutions if and only if it includes the weakest superintuitionistic inquisitive logic. Various consequences of this result are explored. For example, it is shown that every superintuitionistic inquisitive logic can be characterized by a Kripke model built up from D-substitutions. Additionally, we resolve a conjecture concerning superintuitionistic inquisitive logics due to Miglioli et al..
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
60301 - Philosophy, History and Philosophy of science and technology
Návaznosti výsledku
Projekt
<a href="/cs/project/GM21-23610M" target="_blank" >GM21-23610M: Logická struktura informačních kanálů</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Logic, Language, Information, and Computation
ISBN
978-3-031-39783-7
ISSN
—
e-ISSN
—
Počet stran výsledku
17
Strana od-do
194-210
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Halifax
Datum konání akce
11. 7. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—