Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Correcting for misreporting of government benefits

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F67985998%3A_____%2F16%3A00463769" target="_blank" >RIV/67985998:_____/16:00463769 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Correcting for misreporting of government benefits

  • Popis výsledku v původním jazyce

    Recent validation studies show that survey misreporting is pervasive and biases commonnanalyses. Addressing this problem is further complicated, because validation data are usuallynconvenience samples and access is restricted, making them more suitable to document thannto solve the problem. I first use administrative SNAP records linked to survey data to evaluatencorrections for misreporting that have been applied to survey data. Second, I develop anmethod that combines public use data with an estimated conditional distribution from thenvalidation data. It does not require access to the validation data, is simple to implement andnapplicable to a wide range of econometric models. Using the validation data, I show that thisnmethod improves upon both the survey data and the other corrections, particularly fornmultivariate analyses. Some survey-based corrections also yield large error reductions, whichnmakes them attractive alternatives when validation data do not exist. Finally, I examinenwhether estimates can be improved based on similar validation data, to mitigate that thenpopulation of interest is rarely validated. For SNAP, I provide evidence that extrapolationnusing the method developed here improves over survey data and corrections withoutnvalidation data. Deviations from the geographic distribution of program spending are oftennreduced by a factor of 5 or more. The results suggest substantial differences in programneffects, such as reducing the poverty rate by almost one percentage point more, a 75 percentnincrease over the survey estimate.

  • Název v anglickém jazyce

    Correcting for misreporting of government benefits

  • Popis výsledku anglicky

    Recent validation studies show that survey misreporting is pervasive and biases commonnanalyses. Addressing this problem is further complicated, because validation data are usuallynconvenience samples and access is restricted, making them more suitable to document thannto solve the problem. I first use administrative SNAP records linked to survey data to evaluatencorrections for misreporting that have been applied to survey data. Second, I develop anmethod that combines public use data with an estimated conditional distribution from thenvalidation data. It does not require access to the validation data, is simple to implement andnapplicable to a wide range of econometric models. Using the validation data, I show that thisnmethod improves upon both the survey data and the other corrections, particularly fornmultivariate analyses. Some survey-based corrections also yield large error reductions, whichnmakes them attractive alternatives when validation data do not exist. Finally, I examinenwhether estimates can be improved based on similar validation data, to mitigate that thenpopulation of interest is rarely validated. For SNAP, I provide evidence that extrapolationnusing the method developed here improves over survey data and corrections withoutnvalidation data. Deviations from the geographic distribution of program spending are oftennreduced by a factor of 5 or more. The results suggest substantial differences in programneffects, such as reducing the poverty rate by almost one percentage point more, a 75 percentnincrease over the survey estimate.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

  • OECD FORD obor

    50202 - Applied Economics, Econometrics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů